Horospherical Learning with Smart Prototypes - IRISA_UBS
Communication Dans Un Congrès Année : 2024

Horospherical Learning with Smart Prototypes

Résumé

Hyperbolic spaces have emerged as an effective manifold to learn representations due to their ability to efficiently represent hierarchical data structures, with little distortion, even for low-dimensional embeddings. In the chosen hyperbolic model, such as the Poincaré ball, classification is usually conducted by leveraging a signed distance function to the hyperbolic equivalent of a plane (gyroplanes) or by measuring the alignment to a virtual fixed prototype. We propose, in a deep learning context, to leverage a different characterization of a decision boundary: Horospheres, which are level-sets of the Busemann function. They are geometrically equivalent to spheres tangent to the boundary of the hyperbolic space on a virtual point akin to a prototype. Accordingly, we define a new horospherical layer that can be adapted to any neural network backbone. In previous works, prototypes are usually uniformly distributed without using a potentially available label hierarchy for the task at hand. We also propose a hierarchically informed method for positioning these prototypes, based on the Gromov-Wasserstein distance. We find that the combination of a good initialization and optimization of the prototypes improves the baseline performance for image classification on hierarchical datasets and in two semantic segmentation tasks, conducted on image and point cloud datasets. Source code will be released upon acceptance.
Fichier principal
Vignette du fichier
horospherical_learning_with_smart_prototypes___BMVC2024-12.pdf (3.1 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04814237 , version 1 (03-12-2024)

Identifiants

  • HAL Id : hal-04814237 , version 1

Citer

Paul Berg, Bjoern Michele, Minh-Tan Pham, Laetitia Chapel, Nicolas Courty. Horospherical Learning with Smart Prototypes. British Machine Vision Conference (BMVC), British Machine Vision Association (BMVA), Nov 2024, Glasgow, United Kingdom. ⟨hal-04814237⟩

Partager

More