Optimal Experimental Design for the Assessment of Thermophysical Properties in Existing Building Walls - LOCIE EQUIPE BASE
Article Dans Une Revue Heat Transfer Engineering Année : 2023

Optimal Experimental Design for the Assessment of Thermophysical Properties in Existing Building Walls

Résumé

The estimation of wall thermal properties through an inverse problem procedure enables to increase the reliability of the model predictions for building energy eciency. Nevertheless, it requires dening an experimental campaign to obtain in situ observations for existing buildings. The quality of the estimated parameter strongly depends on the quality of the experimental data used for the parameter identication. In other words, there is a close relation between the experiment design and the precision of the retrieved parameters. The design of experiments enables to search for the optimal measurement plan. It ensures the highest precision of the parameter to be estimated. For in situ measurement in buildings, the design of experiments seeks to answer the following questions: How many sensors do we need? What is the sensor position in the wall? The optimal experiment design methodology enables us to answer those questions. The unknown parameter is the thermal conductivity of wall façade modeled considering two-dimensional heat transfer induced by time and space varying boundary conditions.
Fichier sous embargo
Fichier sous embargo
0 0 11
Année Mois Jours
Avant la publication
dimanche 24 novembre 2024
Fichier sous embargo
dimanche 24 novembre 2024
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04297881 , version 1 (21-11-2023)
hal-04297881 , version 2 (24-11-2023)

Licence

Identifiants

Citer

Suelen Gasparin, Julien Berger, Giampaolo D’alessandro, Filippo de Monte, Dariusz Ucinski. Optimal Experimental Design for the Assessment of Thermophysical Properties in Existing Building Walls. Heat Transfer Engineering, 2023, ⟨10.1080/01457632.2023.2241176⟩. ⟨hal-04297881v2⟩
90 Consultations
2 Téléchargements

Altmetric

Partager

More