Spatial-SpinDrop: Spatial dropout-based binary Bayesian neural network with spintronics implementation - Multidisciplinary Institute in Artificial intelligence - Grenoble Alpes
Journal Articles IEEE Transactions on Nanotechnology Year : 2024

Spatial-SpinDrop: Spatial dropout-based binary Bayesian neural network with spintronics implementation

Abstract

Recently, machine learning systems have gained prominence in real-time, critical decision-making domains, such as autonomous driving and industrial automation. Their implementations should avoid overconfident predictions through uncertainty estimation. Bayesian Neural Networks (BayNNs) are principled methods for estimating predictive uncertainty. However, their computational costs and power consumption hinder their widespread deployment in edge AI. Utilizing Dropout as an approximation of the posterior distribution, binarizing the parameters of BayNNs, and further implementing them in spintronics-based computation-in-memory (CiM) hardware arrays can be a viable solution. However, designing hardware Dropout modules for convolutional neural network (CNN) topologies is challenging and expensive, as they may require numerous Dropout modules and need to use spatial information to drop certain elements. In this paper, we introduce MC-SpatialDropout, a spatial dropout-based approximate BayNNs with spintronics emerging devices. Our method utilizes the inherent stochasticity of spintronics devices for efficient implementation of the spatial dropout module compared to existing implementations. Furthermore, the number of dropout modules per network layer is reduced by a factor of 9× and energy consumption by a factor of 300× , while still achieving comparable predictive performance and uncertainty estimates compared to related works
Fichier principal
Vignette du fichier
2306.10185v1.pdf (548.01 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04757807 , version 1 (05-01-2025)

Identifiers

Cite

Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prenat, Lorena Anghel, et al.. Spatial-SpinDrop: Spatial dropout-based binary Bayesian neural network with spintronics implementation. IEEE Transactions on Nanotechnology, 2024, 23, pp.636-643. ⟨10.1109/TNANO.2024.3445455⟩. ⟨hal-04757807⟩
9 View
0 Download

Altmetric

Share

More