ACL-rlg: A Dataset for Reading List Generation - l'unam - université nantes angers le mans
Communication Dans Un Congrès Année : 2025

ACL-rlg: A Dataset for Reading List Generation

Résumé

Familiarizing oneself with a new scientific field and its existing literature can be daunting due to the large amount of available articles. Curated lists of academic references, or reading lists, compiled by experts, offer a structured way to gain a comprehensive overview of a domain or a specific scientific challenge. In this work, we introduce ACL-rlg, the largest open expert-annotated reading list dataset. We also provide multiple baselines for evaluating reading list generation and formally define it as a retrieval task. Our qualitative study highlights the fact that traditional scholarly search engines and indexing methods perform poorly on this task, and GPT-4o, despite showing better results, exhibits signs of potential data contamination.
Fichier principal
Vignette du fichier
main.pdf (823.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04852617 , version 1 (27-12-2024)

Identifiants

  • HAL Id : hal-04852617 , version 1

Citer

Julien Aubert-Béduchaud, Florian Boudin, Béatrice Daille, Richard Dufour. ACL-rlg: A Dataset for Reading List Generation. The 31st International Conference on Computational Linguistics, Jan 2025, Abu Dhabi, United Arab Emirates. ⟨hal-04852617⟩
0 Consultations
0 Téléchargements

Partager

More