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This paper proposes a continuous time model for interest rates, based on a bivariate self exciting point process. The two components of this process represent the global supply and demand for xed income instruments. In this framework, closed form expressions are obtained for the rst moments of the short term rate and for bonds, under an equivalent ane risk neutral measure. European derivatives are priced under a forward measure and a numerical algorithm is proposed to evaluate caplets and oorlets. The model is tted to the time series of one year swap rates, from 2004 to 2014. From observation of yield curves over the same period, we lter the evolution of risk premiums of supply and demand processes. Finally, we analyze the sensitivity of implied volatilities of caplets to parameters dening the level of mutual-excitation.

Secondly, it adds mutual excitation and snowball eects, between the supply and demand in interest rate markets. A Hawkes process (see Hawkes (1971aHawkes ( ) (1971b)), [START_REF] Hawkes | A cluster representation of a self-exciting process[END_REF]), is indeed a parsimonious self exciting point process for which the intensity jumps in response and reverts to a target level in the absence of event. As the future of a self exciting process is inuenced by the timing of past events, [START_REF] Errais | Ane point processes and portfolio credit risk[END_REF] use this to generate contagion between defaults in a top down approach to credit risk. [START_REF] Embrechts | Multivariate hawkes processes: an application to nancial data[END_REF] applied multivariate Hawkes processes in their analysis of stocks markets. Hawkes processes are also used by Aït-Sahalia et al. (2014a), (2014b) to model two key aspects of asset prices: clustering in time and cross sectional contamination between regions. On another hand, these processes are increasingly integrated in high frequency nance. Examples include the modeling of the duration between trades [START_REF] Bauwens | Handbook of nancial time series: modelling nancial high frequency data using point processes[END_REF] or the arrival process of buy and sell orders, as in [START_REF] Bacry | Modelling microstructure noise with mutually exciting point processes[END_REF]. [START_REF] Giot | Market risk models for intraday data[END_REF] This research complements the existing literature about interest rate modeling in several directions. It is one of the rst to use exclusively a bivariate Hawkes process for the modeling of the term structure of interest rates. Secondly, the model is compliant with the theory of monetary economics. Thirdly, this work provides all the tools for pricing bonds and for reconciling the dynamics of the short term rate under the real measure, with the term structure of bonds yields, evaluated under the risk neutral measure. We propose a family of changes of measure that preserves the dynamics of the process under real and risk neutral measures. Finally, after an analyze of the dynamics of bond quotes, the moment generating function of bond yields under a forward measure is detailed and a discrete Fourier transform algorithm is proposed to price derivatives.

The paper proceeds as follows. Section 2 introduces the model and derives its main features, like the moments of intensities for the arrival of bid and ask orders. In Section 3, we present equivalent exponential ane measures and study the conditions ensuring that the equivalent measure is risk neutral. After a presentation of the dynamics of the short term rate under this risk neutral measure, a formula for bond pricing is proposed. The section 4 is about the valuation of derivatives. In section 5, we t the model to the time series of one year swap rate.

From observation of yield curves over the same period, we lter the evolution of risk premiums of supply and demand processes. Finally, we test the sensitivity of yield curves and smiles of implied volatilities to changes of parameters.

Model.

The short term interest rate, r t is assumed to be the sum of a function of time ϕ(t) and of a process X t , r t = ϕ(t) + X t ,

(1) on a complete probability space (Ω, F, P ), with a right-continuous information ltration F = (F t ) t>0 , where P denotes the real probability measure. In most of ane models, the process X t is Gaussian. As our purpose is to emphasize the link existing between the level of interest rates and bid-ask orders for bonds or any other interest rate products, X t is dened as the dierence between the total supply and demand for such instruments. On another hand, to introduce path dependency and mutual excitation between the arrivals of bid and ask orders, the aggregate supply and demand are modeled by a bivariate Hawkes process. These orders and their numbers are respectively noted O 1 ,O 2 and N 1 t ,N 2 t . The processes modeling the aggregate supply and demand are then dened as the total of all bid and orders till time t:

L 1 t = N 1 t i=1 O 1 i , (2) 
L 2 t = N 2 t i=1
O 2 i .

(

) 3 
The orders sizes, O 1 t and O 2 t , are distributed on (0, +∞) according to ν 1 (z) and ν 2 (z). The positivity of O 1 t and O 2 t ensures the identiability of the model. In the numerical illustration, order sizes are exponential random variables but any other type of positive distribution can be used. In later developments, their rst and second moments are noted

µ 1 = E(O 1 ), µ 2 = E(O 2 ), η 1 = E O 1 2 , η 2 = E O 2 2
. From the economic theory (see e.g. chapter 5 of Mishkin ( 2007) ), we know that an increase of the aggregate oer, L 1 t , of bonds causes a decline of their prices and a rise of interest rates. In the opposite scenario, under the pressure of a high aggregate demand L 2 t , bonds prices grow up and interest rates drop. Then if α 1 and α 2 respectively denotes the permanent impact of sell and buy orders of bonds, the economic theory suggests the following dynamics for X t :

X t = α 1 L 1 t -α 2 L 2 t (4)
and its dierential dynamics is given by:

dX t = α 1 dL 1 t -α 2 O 2 dL 2 t (5) = α 1 O 1 dN 1 t -α 2 O 2 dN 2 t
As O 1 t and O 2 t are positive, positive and negative variations of interest rates are respectively attributed to arrivals of bid and ask orders. The chosen dynamics for r t allows negative interest rates but we don't consider it as a limitation. Indeed, since the 2012 crisis of the European sovereign debts, we have observed several periods during which short term rates (sovereign or interbank) were negative (e.g. in 2014, the EONIA was negative 61 times over 254 days of trading). On another hand, the probability of observing negative rates can be restricted by an appropriate choice for the dynamics of N 1 t ,N 2 t , as discussed later in section 4. The arrivals of buy or sell orders are point processes with self exciting dynamics and their intensities are random processes governed by the next equations:

dλ i t = κ i (c i -λ i t )dt + δ i,1 dL 1 t + δ i,2 dL 2 t i = 1, 2, (6) 
where δ i,j for i, j = 1, 2 are constant. Coecients δ 1,2 and δ 2,1 set the cross impact of demand on supply and vice versa. They measure the dependence between them and can capture some interesting stylized facts like the impact of bond issuance during a period of low interest rates. E.g. if δ 12 > 0, the frequency of bonds issuance increases when the demand, L 2 t , steps up and drives down interest rates according to equation [START_REF] Bauwens | Handbook of nancial time series: modelling nancial high frequency data using point processes[END_REF].

As shown in [START_REF] Errais | Ane point processes and portfolio credit risk[END_REF], if

J i t = (L i t , N i t ), the process (λ 1 t , J 1 t , λ 2 t , J 2 t ) is a Markov process in the state space D = (R + × R + × N) 2
and its innitesimal generator for any function g : D → R with partial derivatives g λ 1 , g λ 2 , is such that:

Ag(λ 1 t , J 1 t , λ 2 t , J 2 t ) = κ 1 (c 1 -λ 1 t )g λ 1 + κ 2 (c 2 -λ 2 t )g λ 2 (7) +λ 1 t ˆ+∞ -∞ g(λ 1 t + δ 1,1 z, J 1 t + (z, 1) , λ 2 t + δ 2,1 z, J 2 t ) -g(λ 1 t , J 1 t , λ 2 t , J 2 t )dν 1 (z) +λ 2 t ˆ+∞ -∞ g(λ 1 t + δ 1,2 z, J 1 t , λ 2 t + δ 2,2 z, J 2 t + (z, 1) ) -g(λ 1 t , J 1 t , λ 2 t , J 2 t )dν 2 (z).
Under mild conditions, the expectation of g(.) is equal to the integral of the expected innitesimal generator:

E g(λ 1 T , J 1 T , λ 2 T , J 2 T )|F t = g(λ 1 t , J 1 t , λ 2 t , J 2 t ) + E ˆT t Ag(λ 1 s , J 1 s , λ 2 s , J 2 s )ds|F t (8) = g(λ 1 t , J 1 t , λ 2 t , J 2 t ) + ˆT t E Ag(λ 1 s , J 1 s , λ 2 s , J 2 s )|F t ds.
The derivative of this expectation with respect to time is equal to its expected innitesimal generator:

∂ ∂T E g(λ 1 T , J 1 T , λ 2 T , J 2 T )|F t = E Ag(λ 1 T , J 1 T , λ 2 T , J 2 T )|F t , (9) 
The next proposition relies on this last feature to calculate the rst moments of intensities.

Proposition 2.1. Let m i (t) denote the expected intensity1 , E λ i t , for i=1,2. They are given by the following expressions

m 1 (t) m 2 (t) = V 1 γ 1 e γ 1 t -1 0 0 1 γ 2 e γ 2 t -1 V -1 κ 1 c 1 κ 2 c 2 +V e γ 1 t 0 0 e γ 2 t V -1 λ 1 0 λ 2 0 , (10) 
where γ 1,2 are constant,

γ 1,2 := 1 2 ((δ 1,1 µ 1 -κ 1 ) + (δ 2,2 µ 2 -κ 2 )) ± 1 2 ((δ 1,1 µ 1 -κ 1 ) -(δ 2,2 µ 2 -κ 2 )) 2 + 4δ 1,2 δ 2,1 µ 1 µ 2 , (11) 
V ,V -1 are matrix given by:

V = -δ 1,2 µ 2 -δ 1,2 µ 2 (δ 1,1 µ 1 -κ 1 ) -γ 1 (δ 1,1 µ 1 -κ 1 ) -γ 2 (12) V -1 = 1 Υ (δ 1,1 µ 1 -κ 1 ) -γ 2 δ 1,2 µ 2 γ 1 -(δ 1,1 µ 1 -κ 1 ) -δ 1,2 µ 2 (13) 
and Υ is dened by

Υ := -δ 1,2 µ 2 ((δ 1,1 µ 1 -κ 1 ) -(δ 2,2 µ 2 -κ 2 )) 2 + 4δ 1,2 δ 2,1 µ 1 µ 2 . ( 14 
)
Proof. Consider the functions g i = λ i t for i = 1, 2. According to equations ( 7) and ( 8), their expectations are such that

E(Ag 1 ) = κ 1 (c 1 -E λ 1 t )dt + E λ 1 t ˆ+∞ -∞ δ 1,1 z dν 1 (z)dt + E λ 2 t ˆ+∞ -∞ δ 1,2 z dν 2 (z)dt = κ 1 (c 1 -E λ 1 t )dt + E λ 1 t δ 1,1 µ 1 dt + E λ 2 t δ 1,2 µ 2 dt E(Ag 2 ) = κ 2 (c 2 -E λ 2 t )dt + E λ 1 t ˆ+∞ -∞ δ 2,1 z dν 1 (z)dt + E λ 2 t ˆ+∞ -∞ δ 2,2 z dν 2 (z)dt = κ 2 (c 2 -E λ 2 t )dt + E λ 1 t δ 2,1 µ 1 dt + E λ 2 t δ 2,2 µ 2 dt
If we refer to equation [START_REF] Chen | Corporate yield spreads and bond liquidity[END_REF], moments m 1 (t) and m 2 (t) are solutions of a system of ordinary dierential equations (ODEs) with respect to time:

∂ ∂t m 1 m 2 = κ 1 c 1 κ 2 c 2 + (δ 1,1 µ 1 -κ 1 ) δ 1,2 µ 2 δ 2,1 µ 1 (δ 2,2 µ 2 -κ 2 ) m 1 m 2 . ( 15 
)
Finding a solution requires to determine eigenvalues γ and eigenvectors (v 1 , v 2 ) of the matrix present in the right term of this system:

(δ 1,1 µ 1 -κ 1 ) δ 1,2 µ 2 δ 2,1 µ 1 (δ 2,2 µ 2 -κ 2 ) v 1 v 2 = γ v 1 v 2 .
Eigenvalues cancel the determinant of the following matrix:

det (δ 1,1 µ 1 -κ 1 ) -γ δ 1,2 µ 2 δ 2,1 µ 1 (δ 2,2 µ 2 -κ 2 ) -γ = 0
and are solutions of the second order equation:

γ 2 -γ ((δ 1,1 µ 1 -κ 1 ) + (δ 2,2 µ 2 -κ 2 )) + (δ 1,1 µ 1 -κ 1 )(δ 2,2 µ 2 -κ 2 ) -δ 1,2 δ 2,1 µ 1 µ 2 = 0
Roots of this last equation are γ 1 and γ 2 , as dened by the equation [START_REF] Cox | A theory of the term structure of interest rates[END_REF]. One way to nd an eigenvector is to note that it must be orthogonal to each rows of the matrix:

(δ 1,1 µ 1 -κ 1 ) -γ δ 1,2 µ 2 δ 2,1 µ 1 (δ 2,2 µ 2 -κ 2 ) -γ v 1 v 2 = 0, then necessary, v i 1 v i 2 = -δ 1,2 µ 2 (δ 1,1 µ 1 -κ 1 ) -γ i f or i = 1, 2.
If D = diag(γ 1 , γ 2 ). The matrix in the right term of equation ( 15) admits the representation:

(δ 1,1 µ 1 -κ 1 ) δ 1,2 µ 2 δ 2,1 µ 1 (δ 2,2 µ 2 -κ 2 ) = V DV -1 ,
where V is the matrix of eigenvectors, as dened in equation [START_REF] Dai | Specication analysis of ane term structure models[END_REF]. Its determinant, Υ, and its inverse are respectively provided by equations ( 14) and [START_REF] Dassios | A Double shot noise process and its application in Insurance[END_REF]. If two new variables are dened as follows:

u 1 u 2 = V -1 m 1 m 2 
The system ( 15) is decoupled into two independent ODEs:

∂ ∂t u 1 u 2 = V -1 κ 1 c 1 κ 2 c 2 + γ 1 0 0 γ 2 u 1 u 2 . ( 16 
)
And introducing the following notations

V -1 κ 1 c 1 κ 2 c 2 = 1 2
, leads to the solutions for the system (16):

u 1 (t) = 1 γ 1 e γ 1 t -1 + d 1 e γ 1 t u 2 (t) = 2 γ 2 e γ 2 t -1 + d 2 e γ 2 t where d = (d 1 , d 2 ) is such that d = V -1 λ 0 . Or in in matrix form, u 1 u 2 = 1 γ 1 e γ 1 t -1 0 0 1 γ 2 e γ 2 t -1 V -1 κ 1 c 1 κ 2 c 2 + e γ 1 t 0 0 e γ 2 t V -1 λ 1 0 λ 2 0
Expressions [START_REF] Covitz | Liquidity or credit risk? the determinants of very shortterm corporate yield spreads[END_REF] for m 1 , m 2 are inferred from this last relation.

The next corollary is an immediate consequence of this last proposition.

Corollary 2.2. The expectation of X t is equal to:

E (X t ) = X 0 + α 1 µ 1 ˆt m 1 (s)ds -α 2 µ 2 ˆt 0 m 2 (s)ds (17) 
Proof. Let us denote f = E (X t ), then the expectation of its innitesimal generator is equal to

E(Af ) = E λ 1 t ˆ+∞ -∞ α 1 z dν 1 (z)dt -E λ 2 t ˆ+∞ -∞ α 2 z dν 2 (z)dt = E λ 1 t α 1 µ 1 dt -E λ 2 t α 2 µ 2 dt
and according to equation ( 8), we conclude.

The system of ODEs that rules variances and correlation of intensities is provided in the next proposition.

Proposition 2.3. Let us denote the variance of

λ i by V i (t) = E λ i t 2 -(m i (t)) 2 for i = 1, 2
and their covariance by

V 3 (t) = E λ 1 t λ 2 t -m 1 (t)m 2 (t).
They are solutions of the following system of ODEs:

∂ ∂t   V 1 V 2 V 3   =   δ 2 1,1 η 1 δ 2 1,2 η 2 δ 2 2,1 η 1 δ 2 2,2 η 2 δ 1,1 δ 2,1 η 1 δ 2,2 δ 1,2 η 2   m 1 (t) m 2 (t) + (18)   2 (δ 1,1 µ 1 -κ 1 ) 0 2δ 1,2 µ 2 0 2 (δ 2,2 µ 2 -κ 2 ) 2δ 2,1 µ 1 δ 2,1 µ 1 δ 1,2 µ 2 (δ 1,1 µ 1 + δ 2,2 µ 2 ) -κ 1 -κ 2     V 1 V 2 V 3   ,
with initial conditions

V i (0) = 0 f or i = 1, 2, 3.
Proof. Let us introduce the following notations:

g i = λ i t 2 for i = 1, 2 and g 3 = λ 1 t λ 2 t , according
to equations ( 14) and ( 13), the next relation holds

Ag 1 = 2λ 1 t κ 1 c 1 -2 λ 1 t 2 κ 1 dt + λ 1 t ˆ+∞ -∞ 2λ 1 t δ 1,1 z + (δ 1,1 z) 2 dν 1 (z)dt +λ 2 t ˆ+∞ -∞ 2λ 1 t δ 1,2 z + (δ 1,2 z) 2 dν 2 (z)dt Ag 2 = 2λ 2 t κ 2 c 2 -2 λ 2 t 2 κ 2 dt + λ 2 t ˆ+∞ -∞ 2λ 2 t δ 2,2 z + (δ 2,2 z) 2 dν 2 (z)dt +λ 1 t ˆ+∞ -∞ 2λ 2 t δ 2,1 z + (δ 2,1 z) 2 dν 1 (z)dt Ag 3 = κ 1 (c 1 -λ 1 t )λ 2 t + κ 2 (c 2 -λ 2 t )λ 1 t +λ 1 t ˆ+∞ -∞ λ 1 t + δ 1,1 z λ 2 t + δ 2,1 z -λ 1 t λ 2 t dν 1 (z)dt +λ 2 t ˆ+∞ -∞ λ 1 t + δ 1,2 z λ 2 t + δ 2,2 z -λ 1 t λ 2 t dν 2 (z)dt If we note v i = E λ i t 2 for i = 1, 2 and v 3 = E λ 1 t λ 2
t , a system of ODEs is deduced from equation ( 9):

∂ ∂t v 1 = 2m 1 (t)κ 1 c 1 -2v 1 (t)κ 1 + 2v 2 (t)δ 1,1 µ 1 + m 1 (t)δ 2 1,1 η 1 + 2v 3 (t)δ 1,2 µ 2 + m 2 (t)δ 2 1,2 η 2 ∂ ∂t v 2 = 2m 2 (t)κ 2 c 2 -2v 2 (t)κ 2 + 2v 2 (t)δ 2,2 µ 2 + m 2 (t)δ 2 2,2 η 2 + 2v 3 (t)δ 2,1 µ 1 + m 1 (t)δ 2 2,1 η 1 (19) ∂ ∂t v 3 = m 2 (t)κ 1 c 1 -κ 1 v 3 (t) + m 1 (t)κ 2 c 2 -κ 2 v 3 (t) +v 1 (t)δ 2,1 µ 1 + v 3 (t)δ 1,1 µ 1 + m 1 (t)δ 1,1 δ 2,1 η 1 +v 2 (t)δ 1,2 µ 2 + v 3 (t)δ 2,2 µ 2 + m 2 (t)δ 2,2 δ 1,2 η 2
As centered second moments V i (t), are linked to non centered ones, v i by the next dierential equations

∂ ∂t V i = ∂ ∂t v i -2m i ∂ ∂t m i i = 1, 2 ∂ ∂t V 3 = ∂ ∂t v 3 -m 1 ∂ ∂t m 2 -m 2 ∂ ∂t m 1
It is sucient to combine equations ( 15) and ( 19) to conclude.

The next proposition presents the moment generating function of X t and of its integral. This result is used later to infer the price of a bond and its dynamics under an equivalent measure.

Proposition 2.4. Let ψ 1 (.) and ψ 2 (.) denote the moment generating functions of O 1 and O 2 :

ψ i (w) := E e wO i i = 1, 2. (20) 
The moment generating function of

w 0 X T -w 1 ´T t X s ds+ w 2 w 3 λ 1 T λ 2
T is an ane function of X t and of intensities:

E      e w 0 X T -w 1 ´T t Xsds+   w 2 w 3     λ 1 T λ 2 T   | F t      = (21) exp (w 0 -w 1 (T -t)) X t + A(t, T ) + B 1 (t, T ) B 2 (t, T ) λ 1 t λ 2 t
where A(t, T ) , B 1 (t, T ) and B 2 (t, T ) are solutions of a system of ODEs :

     ∂ ∂t B 1 (t, T ) = κ 1 B 1 (t, T ) -[ψ 1 (B 1 (t, T )δ 1,1 + w 0 α 1 -w 1 α 1 (T -t) + B 2 (t, T )δ 2,1 ) -1] ∂ ∂t B 2 (t, T ) = κ 2 B 2 (t, T ) -[ψ 2 (B 1 (t, T )δ 1,2 -w 0 α 2 + w 1 α 2 (T -t) + B 2 (t, T )δ 2,2 ) -1] ∂ ∂t A(t, T ) = -κ 1 c 1 B 1 (t, T ) -κ 2 c 2 B 2 (t, T ) (22) 
with the terminal conditions

A(T, T ) = 0 , B 1 (T, T ) = w 2 , B 2 (T, T ) = w 3 . Proof. Let us dene Y t := E      e w 0 X T -w 1 ´T t Xsds+   w 2 w 3     λ 1 T λ 2 T   | F t     
. As F t ⊂ F u for all u ≥ t, the rule of conditional expectation states that

Y t = E      e -w 1 ´u t Xsds E      e w 0 X T -w 1 ´T u Xsds+   w 2 w 3     λ 1 T λ 2 T   | F u      | F t      = E e -w 1 ´u t Xsds Y u | F t
Then, by assuming enough regularity to allow one to take the limit within the expectation, the following limit converges to zero:

lim u→t E e -w 1 ´u t Xsds Y u | F t -Y t u -t = 0.
If we develop the exponential by its Taylor approximation of rst order, we can rewrite this limit as:

lim u→t E (Y u | F t ) -Y t u -t = w 1 X t Y t . (23) 
The right hand term in this last equation is precisely the innitesimal generator of

Y t := f (t, λ 1 t , J 1 t , λ 2 t , J 2 t ). If f t , f λ 1 and f λ 2 denote
respectively the partial derivatives of f with respect to time and intensities, the equation ( 23) is rewritten as follows:

w 1 α 1 L 1 t -α 2 L 2 t f = f t + κ 1 (c 1 -λ 1 t )f λ 1 + κ 2 (c 2 -λ 2 t )f λ 2 (24) +λ 1 t ˆ+∞ -∞ f (t, λ 1 t + δ 1,1 z, J 1 t + (z, 1) , λ 2 t + δ 2,1 z, J 2 t ) -f (t, λ 1 t , J 1 t , λ 2 t , J 2 t )dν 1 (z) +λ 2 t ˆ+∞ -∞ f (t, λ 1 t + δ 1,2 z, J 1 t , λ 2 t + δ 2,2 z, J 2 t + (z, 1) ) -f (t, λ 1 t , J 1 t , λ 2 t , J 2 t )dν 2 (z).
f also satises the next limit condition

f (T, λ 1 T , J 1 T , λ 2 T , J 2 T ) = exp w 0 α 1 L 1 T -α 2 L 2 T + w 2 w 3 λ 1 T λ 2 T ( 25 
)
Let us assume that f has an exponential form

f = exp A(t, T ) + B(t, T ) λ 1 t λ 2 t + C(t, T ) L 1 t L 2 t where B(t, T ) = (B 1 (t, T ) , B 2 (t, T )) and C(t, T ) = (C 1 (t, T ) , C 2 (t, T ))
. Under this assumption, equation ( 24) becomes

w 1 α 1 L 1 t -α 2 L 2 t = ∂ ∂t A + λ 1 t ∂ ∂t B 1 + λ 2 t ∂ ∂t B 2 + L 1 t ∂ ∂t C 1 + L 2 t ∂ ∂t C 2 +λ 1 t [((ψ 1 (B 1 δ 1,1 + C 1 + B 2 δ 2,1 )) -1] + κ 1 (c 1 -λ 1 t )B 1 +λ 2 t [(ψ 2 (B 1 δ 1,2 + C 2 + B 2 δ 2,2 ) -1)] + κ 2 (c 2 -λ 2 t )B 2 . ( 26 
)
As λ i t and L i t are random for i=1,2, this last relation holds only if their multiplicative coecients are null. This is achieved only if

0 = ∂ ∂t B 1 -κ 1 B 1 + [ψ 1 (B 1 δ 1,1 + C 1 + B 2 δ 2,1 ) -1] , 0 = ∂ ∂t B 2 -κ 2 B 2 + [ψ 2 (B 1 δ 1,2 + C 2 + B 2 δ 2,2 ) -1] , 0 = ∂ ∂t A + κ 1 c 1 B 1 + κ 2 c 2 B 2 , (27) 
w 1 α 1 = ∂ ∂t C 1 -w 1 α 2 = ∂ ∂t C 2 ,
From the boundary condition ( 25), we infer that

C 1 (t, T ) = w 0 α 1 -w 1 α 1 (T -t) and C 2 (t, T ) = -w 0 α 2 + w 1 α 2 (T -t).
Notice that it is possible to compute the probability density function of X t , by inverting the moment generating function [START_REF] Hainaut | A fractal version of the HullWhite interest rate model[END_REF], with the Discrete Fourier Transform of proposition 3.8, in section 4.

3 Equivalent exponential ane measures and bond pricing.

As the characteristic function of X t is an ane function of

λ 1 t , λ 2 t , L 1 t , L 2 
t , we study exponential ane changes of measure and show that the dynamics of interest rates is preserved under the new measure. These equivalent measures are induced by an exponential martingale of the form:

M t (θ 1 , θ 2 ) := exp (a 1 (θ 1 , θ 2 ), a 2 (θ 1 , θ 2 )) λ 1 t λ 2 t + (θ 1 , θ 2 ) L 1 t L 2 t -ϕ(θ 1 , θ 2 )t . ( 28 
)
where θ 1 , θ 2 ∈ R and are assimilated later to risk premiums. If for any given couple of parameters (θ 1 , θ 2 ), there exist suitable solutions a 1 (θ 1 , θ 2 ) and a 2 (θ 1 , θ 2 ) for the system of equations

a 1 (θ 1 , θ 2 )κ 1 -(ψ 1 (a 1 (θ 1 , θ 2 )δ 1,1 + a 2 (θ 1 , θ 2 )δ 2,1 + θ 1 ) -1) = 0 a 2 (θ 1 , θ 2 )κ 2 -(ψ 2 (a 2 (θ 1 , θ 2 )δ 2,2 + a 1 (θ 1 , θ 2 )δ 1,2 + θ 2 ) -1) = 0 (29) 
where ψ i (w) = E(e wO i ) for i = 1, 2, and if ϕ(θ 1 , θ 2 ) is a linear combination of these solutions

ϕ(θ 1 , θ 2 ) = a 1 (θ 1 , θ 2 )κ 1 c 1 + a 2 (θ 1 , θ 2 )κ 2 c 2 (30) then M t (θ 1 , θ 2 ) is a local martingale.
Proof. Let us denote by Y t the exponent of M t :

Y t = (a 1 (θ 1 , θ 2 ), a 2 (θ 1 , θ 2 )) λ 1 t λ 2 t + (θ 1 , θ 2 ) L 1 t L 2 t -ϕ(θ 1 , θ 2 )t (31) 
According to equation ( 6), its innitesimal dynamics is given by

dY t = a 1 κ 1 (c 1 -λ 1 t )dt + a 2 κ 2 (c 2 -λ 2 t )dt + (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) dL 1 t + (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ) dL 2 t -ϕ(θ 1 , θ 2 )dt
In the remainder of this proof, the random measure of O i is noted χ i (.) and is such that

O i = ´∞ -∞ χ i (dz) for i = 1, 2.
Applying the Ito's lemma for semi-martingales to M t leads to the next relation:

dM t = M t dY t + 1 2 M t d [Y t , Y t ] c t +M t ˆ∞ -∞ e (a 1 δ 1,1 +a 2 δ 2,1 +θ 1 )z -1 -(a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) z χ 1 (dz)dN 1 t +M t ˆ∞ -∞ e (a 2 δ 2,2 +a 1 δ 1,2 +θ 2 )z -1 -(a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ) z χ 2 (dz)dN 2 t or equal to dM t = M t (a 1 κ 1 c 1 + a 2 κ 2 c 2 -ϕ) dt -M t λ 1 t a 1 κ 1 - ˆ∞ -∞ e (a 1 δ 1,1 +a 2 δ 2,1 +θ 1 )z -1 ν 1 (dz) dt -M t λ 2 t a 2 κ 2 - ˆ∞ -∞ e (a 2 δ 2,2 +a 1 δ 1,2 +θ 2 )z -1 ν 2 (dz) dt +M t ˆ∞ -∞ e (a 1 δ 1,1 +a 2 δ 2,1 +θ 1 )z -1 χ 1 (dz)dN 1 t -λ 1 t ν 1 (dz)dt +M t ˆ∞ -∞ e (a 2 δ 2,2 +a 1 δ 1,2 +θ 2 )z -1 χ 2 (dz)dN 2 t -λ 2 t ν 2 (dz)dt .
Since the integrals with respect to χ i (dz)dN i t -λ i t ν i (dz)dt are local martingales, M t is also a local martingale if and only if the following relations hold:

     a 1 (θ 1 , θ 2 )κ 1 c 1 + a 2 (θ 1 , θ 2 )κ 2 c 2 -ϕ(θ 1 , θ 2 ) = 0 a 1 (θ 1 , θ 2 )κ 1 -´∞ -∞ e (a 1 (θ 1 ,θ 2 )δ 1,1 +a 2 (θ 1 ,θ 2 )δ 2,1 +θ 1 )z -1 ν 1 (dz) = 0 a 2 (θ 1 , θ 2 )κ 2 -´∞ -∞ e (a 2 (θ 1 ,θ 2 )δ 2,2 +a 1 (θ 1 ,θ 2 )δ 1,2 +θ 2 )z -1 ν 2 (dz) = 0
and these conditions are equivalent to equations ( 29) and [START_REF] Vasicek | An equilibrium characterisation of the term structure[END_REF] Assuming the existence of suitable solutions for the system (29), an equivalent measure Q θ 1 ,θ 2 is dened by:

dQ θ 1 ,θ 2 dP Ft = M t (θ 1 , θ 2 ) M 0 (θ 1 , θ 2 ) (32) 
and may be used as risk neutral measure by investors. In this case, the dynamics of intensities and aggregate supply or demand is modied but is still a bivariate Hawkes process:

Proposition 3.2. Let N 1,Q t and N 2,Q t be counting processes with respective intensities    λ 1,Q t = E e (a 1 δ 1,1 +a 2 δ 2,1 +θ 1 )O 1 λ 1 t λ 2,Q t = E e (a 2 δ 2,2 +a 1 δ 1,2 +θ 2 )O 2 λ 2 t , (33) 
under the equivalent measure Q θ 1 ,θ 2 . On another hand, if O 1,Q , O 2,Q denotes random variables dened by the following characteristic functions

   ψ Q 1 (z) := E e zO 1,Q = ψ 1 (z+(δ 1,1 a 1 +δ 2,1 a 2 +θ 1 )) ψ 1 (a 1 δ 1,1 +a 2 δ 2,1 +θ 1 ) ψ Q 2 (z) := E e zO 2,Q = ψ 2 (z+(a 2 δ 2,2 +a 1 δ 1,2 +θ 2 )) ψ 2 (a 2 δ 2,2 +a 1 δ 1,2 +θ 2 ) (34) and if L 1,Q t , L 2,Q
t are dened by the next jump processes

L i,Q t = N i,Q t k=1 O i,Q k i = 1, 2, (35) 
intensities λ j t are driven by the following SDE under

Q θ 1 ,θ 2 dλ i t = κ i (c i -λ i t )dt + δ i,1 dL 1,Q t + δ i,2 dL 2,Q t i = 1, 2. (36) 
Proof. If Y t is the exponent of M t , as dened by equation ( 31), the characteristic function of X T under the risk neutral is then equal to 

E Q e wX T |F t = E e Y T -Yt+wX T |F t = e -Yt E e Y T +wX T |F t If f (t, λ 1 t , J 1 r , λ 2 r , J 2 r ) denotes E e Y T +wX
0 = f t + κ 1 (c 1 -λ 1 t )f λ 1 + κ 2 (c 2 -λ 2 t )f λ 2 (37) +λ 1 t ˆ+∞ -∞ f (t, λ 1 t + δ 1,1 z, J 1 t + (z, 1) , λ 2 t + δ 2,1 z, J 2 t ) -f (t, λ 1 t , J 1 t , λ 2 t , J 2 t )dν 1 (z) +λ 2 t ˆ+∞ -∞ f (t, λ 1 t + δ 1,2 z, J 1 t , λ 2 t + δ 2,2 z, J 2 t + (z, 1) ) -f (t, λ 1 t , J 1 t , λ 2 t , J 2 t )dν 2 (z).
where f t , f λ 1 , f λ 2 are the partial derivatives of f (.) with respect to time and intensities. Furthermore given that

Y T + wX T = a 1 λ 1 T -κ 1 c 1 T + a 2 λ 2 T -κ 2 c 2 T (38) + (θ 1 + α 1 w) L 1 T + (θ 2 + α 2 w) L 2 T .
f (.) satises the following terminal condition at time t = T :

f (T, λ 1 T , J 1 T , λ 2 T , J 2 T ) = exp (θ 1 + α 1 w) L 1 T + (θ 2 + α 2 w) L 2 T +a 1 λ 1 T -κ 1 c 1 T + a 2 λ 2 T -κ 2 c 2 T .
In the remainder of this section, it is assumed that f (.) is an exponential ane function:

f = exp A(t, T ) + B(t, T ) ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 )λ 1 t ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 )λ 2 t + C(t, T ) L 1 t L 2 t
where B(t, T, w) = (B 1 (t, T, w) , B 2 (t, T, w)) and C(t, T, w) = (C 1 (t, T, w) , C 2 (t, T, w)) . Under this assumption, the partial derivatives of f are given by :

f t = ∂ ∂t A + ψ 1 λ 1 t ∂ ∂t B 1 + ψ 2 λ 2 t ∂ ∂t B 2 + L 1 t ∂ ∂t C 1 + L 2 t ∂ ∂t C 2 f f λ 1 = ψ 1 B 1 f f λ 2 = ψ 2 B 2 f
where ψ 1 and ψ 2 abusively denote ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) and ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ). Integrands in equation (37) are equal to:

f (t, λ 1 t + δ 1,1 z, J 1 t + (z, 1) , λ 2 t + δ 2,1 z, J 2 t ) -f (λ 1 t , J 1 t , λ 2 t , J 2 t ) = f [exp ((B 1 ψ 1 δ 1,1 + C 1 + B 2 ψ 2 δ 2,1 ) z) -1] , f (λ 1 t + δ 1,2 z, J 1 t , λ 2 t + δ 2,2 z, J 2 t + (z, 1) ) -f (λ 1 t , J 1 t , λ 2 t , J 2 t ) = f [exp ((B 1 ψ 1 δ 1,2 + C 2 + B 2 ψ 2 δ 2,2 ) z) -1] .
Injecting these expressions in equation (37) yields a system of ODEs for A, B 1 and B 2 :

0 = ∂ ∂t B 1 -κ 1 B 1 + 1 ψ 1 [ψ 1 (B 1 ψ 1 δ 1,1 + C 1 + B 2 ψ 2 δ 2,1 ) -1] , 0 = ∂ ∂t B 2 -κ 2 B 2 + 1 ψ 2 [ψ 2 (B 1 ψ 1 δ 1,2 + C 2 + B 2 ψ 2 δ 2,2 ) -1] , 0 = ∂ ∂t A + ψ 1 κ 1 c 1 B 1 + ψ 2 κ 2 c 2 B 2 , ( 39 
) 0 = ∂ ∂t C 1 , 0 = ∂ ∂t C 2 .
with the terminal conditions:

           A(T, T ) = -a 1 κ 1 c 1 T -a 2 κ 2 c 2 T B 1 (T, T ) = a 1 ψ 1 B 2 (T, T ) = a 2 ψ 2 C 1 (T, T ) = (θ 1 + α 1 w) C 2 (T, T ) = (θ 2 + α 2 w)
.

As C 1 (t, T ) = θ 1 + α 1 w and C 2 (t, T ) = θ 2 + α 2 w, the moment generating function of X t is equal to:

E Q e wX T |F t = e -Yt E e Y T +wX T |F t = exp A + a 1 κ 1 c 1 t + a 2 κ 2 c 2 t + (B 1 ψ 1 -a 1 ) λ 1 t + (B 2 ψ 2 -a 2 ) λ 2 t + wX t .
In the remainder of the proof, this expectation is restated in a form similar to the moment generating function of X T under P . To achieve this, the following change of variables is done:

A := A + a 1 κ 1 c 1 t + a 2 κ 2 c 2 t, B 1 := B 1 - a 1 ψ 1 , B 2 := B 2 - a 2 ψ 2 .
with the terminal conditions A (T, T ) = 0 , B 1 (T, T ) = 0, B 2 (T, T ) = 0. As from equation ( 29), the following relation holds

   κ 1 a 1 ψ 1 = 1 -1 ψ 1 κ 2 a 2 ψ 2 = 1 -1 ψ 2 (40) 
The system of ODE's (39) becomes:

0 = ∂ ∂t B 1 -κ 1 B 1 + 1 ψ 1 ψ 1 B 1 ψ 1 δ 1,1 + (θ 1 + δ 1,1 a 1 + δ 2,1 a 2 ) + α 1 w + B 2 ψ 2 δ 2,1 -1 , 0 = ∂ ∂t B 2 -κ 2 B 2 + 1 ψ 2 ψ 2 B 1 ψ 1 δ 1,2 + (θ 2 + δ 1,2 a 1 + δ 2,2 a 2 ) + α 2 w + B 2 ψ 2 δ 2,2 -1 , 0 = ∂ ∂t A + ψ 1 κ 1 c 1 B 1 + ψ 2 κ 2 c 2 B 2 ,
If we consider jumps O 1,Q , O 2,Q that have moment generating functions dened by equations (34),the moment generating function of X T under Q is given by

E Q e wX T |F t = exp wX t + A (t, T ) + B 1 (t, T ) B 2 (t, T ) λ 1,Q t λ 2,Q t (41)
where A , B 1 and B 2 solve a system, identical to the one of proposition 2.4.

In numerical applications, sizes of orders under P are exponential random variables and their probability density functions is dened by two parameters ρ 1 , ρ 2 ∈ R + as follows:

ν 1 (z) = ρ 1 e -ρ 1 z 1 {z≥0} ν 2 (z) = ρ 2 e ρ 2 z 1 {z≤0} . (42) 
In this case, rst and second moments of O 1 and O 2 are respectively equal to µ 1 = 1

ρ 1 , µ 2 = -1 ρ 2
and to η i = 2 (ρ i ) 2 . The moment generating functions are given by ψ 1 (z) = ρ 1 ρ 1 -z for z < ρ 1 and ψ 2 (z) = ρ 2 ρ 2 +z for z > -ρ 2 . In this particular, we have the following interesting corollary:

Corollary 3.3. The distribution of orders are exponential under P and Q and the densities, noted ν Q i (z) under Q, are dened by parameters:

ρ Q 1 = ρ 1 -(δ 1,1 a 1 + δ 2,1 a 2 + θ 1 ) ρ Q 2 = ρ 2 + (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 )
Proof. If we denote β 1 = δ 1,1 a 1 + δ 2,1 a 2 + θ 1 , by construction the moment generating function of sell orders, under the risk neutral measure is provided by the following ratio:

ψ Q 1 (z) = ψ 1 (z + β 1 ) ψ 1 (β 1 ) = ρ 1 ρ 1 -z -β 1 ρ 1 -β 1 ρ 1
and we conclude that sell orders are also exponential under Q. The same reasoning holds for ask orders. 

Under Q θ 1 ,θ
i,Q t = κ i (c Q i -λ i,Q t )dt + δ Q i,1 dL 1,Q t + δ Q i,2 dL 2,Q t i = 1, 2. ( 43 
)
where the parameters dening the process under Q are:

c Q 1 = c 1 ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) c Q 2 = c 2 ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ) δ Q 1,j = δ 1,j ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) j = 1, 2 δ Q 2,j = δ 2,j ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ) j = 1, 2
This corollary is proved by combining equations ( 33) and (36). If markets participants adopt an equivalent exponential ane measure for the risk neutral one, the price of a zero coupon bond is equal to the expected discount factor, under this risk neutral measure. The price is denoted by:

P (t, T, λ 1 t , J 1 t , λ 2 t , J 2 t ) = E Q e -´T t rsds | F t (44) = e -´T t ϕ(s)ds E Q e -´T t Xsds | F t .
and the expectation in the left term of the bond price is provided in the following corollary, that is proved by combining the proposition 2.4 with the corollary 3.4.

Corollary 3.5.

E Q e -´T t Xsds | F t = exp -X t (T -t) + A(t, T ) + B 1 (t, T ) B 2 (t, T ) λ 1Q t λ 2Q t (45)
where A(t, T ) , B 1 (t, T ) and B 2 (t, T ) are solutions of a system of ODEs :

       ∂ ∂t B 1 (t, T ) = κ 1 B 1 (t, T ) -ψ Q 1 B 1 (t, T )δ Q 1,1 -α 1 (T -t) + B 2 (t, T )δ Q 2,1 -1 ∂ ∂t B 2 (t, T ) = κ 2 B 2 (t, T ) -ψ Q 2 B 1 (t, T )δ Q 1,2 + α 2 (T -t) + B 2 (t, T )δ Q 2,2 -1 ∂ ∂t A(t, T ) = -κ 1 c Q 1 B 1 (t, T ) -κ 2 c Q 2 B 2 (t, T ) (46) 
with the terminal conditions A(T, T ) = 0 , B 1 (T, T ) = 0, B 2 (T, T ) = 0.

The dynamics of bond prices depends upon the random measures of jump processes, noted L 1Q (dt, dz) and L 2Q (dt, dz) and such that:

L kQ t = ˆ∞ 0 ˆ∞ -∞ L kQ (dt, dz) k = 1, 2.
Furthermore, the expectation of these measures are equal to E(L kQ (dt, dz)|F t ) = λ kQ t ν k (z) dz dt, for k = 1, 2. The next corollary details the innitesimal dynamics of bond prices:

Corollary 3.6. Bond prices,P (t, T, λ 1Q t , J 1Q t , λ 2Q t , J 2Q 
t ), are ruled by the following SDE:

dP = P r t dt -λ 1Q t P ψ Q 1 B 1 (t, T )δ Q 1,1 -α 1 (T -t) + B 2 (t, T )δ Q 2,1 -1 dt (47) +P ˆ+∞ -∞ exp B 1 (t, T )δ Q 1,1 -α 1 (T -t) + B 1 (t, T )δ Q 2,1 z -1 L 1Q (dt, dz) -λ 2Q t P ψ Q 2 B 1 (t, T )δ Q 1,2 + α 2 (T -t) + B 2 (t, T )δ Q 2,2 -1 dt +P ˆ+∞ -∞ exp B 1 (t, T )δ Q 1,2 + α 2 (T -t) + B 2 (t, T )δ Q 2,2 z -1 L 2Q (dt, dz)
where L 1Q (dt, dz) and L 2Q (dt, dz) are the random measures of jump processes.

Proof. According to the Itô's lemma for semi-martingales, P (t, T, λ 1Q

t , J 1Q t , λ 2Q t , J 2Q t ) is such that dP = P t + κ 1 (c Q 1 -λ 1Q t )P λ 1 dt + κ 2 (c Q 2 -λ 2Q t )P λ 2 dt (48) + ˆ+∞ -∞ P (t, λ 1Q t + δ Q 1,1 z, J 1Q t + (z, 1) , λ 2Q t + δ Q 2,1 z, J 2Q t ) -P (t, λ 1Q t , J 1Q t , λ 2Q t , J 2Q t ) L 1Q (dt, dz) + ˆ+∞ -∞ P (t, λ 1Q t + δ Q 1,2 z, J 1Q t , λ 2Q t + δ Q 2,2 z, J 2Q t + (z, 1) ) -P (t, λ 1Q t , J 1Q t , λ 2Q t , J 2Q t ) L 2Q (dt, dz),
where partial derivatives are obtained from equations ( 45) and ( 46)

From the last corollary, we infer that the instantaneous growth rate for the bond price is well equal to the short-term rate, E dP P |F t = r t dt, as the sum of all other terms in equation ( 47) is a martingale.

Pricing of options.

This section illustrates how the model is used for the pricing of interest rate derivatives, under a forward measure. The yield of maturity T -S, at time T is denoted by Y (T, S) and is dened by: Y (T, S) := -1 S -T log P (T, S) 

(49) = X T + 1 S -T ˆS T ϕ(s)ds -A(T, S) - 1 S -T B 1 (T, S) B 2 (T, S)
f (t, r t , λ t ) = E Q e -´S t rsds V (Y (T, S)) | F t . ( 50 
)
As recommended by [START_REF] Brigo | Interest rate models -Theory and practice[END_REF], it is better to evaluate this last expression under the S-forward measure. This avoids numerical inaccuracies related to the approximation of exp -´S t r s ds , because the discount factor is drawn out of the equation ( 50), under the forward measure. If the market admits at least one risk neutral measure Q, an equivalent probability measures to Q is dened by the technique of changes of numeraire. The S-forward measure has as numeraire, the zero coupon bond of maturity S. Under this measure, the price of any nancial assets, divided by the numeraire P (t, S), is a martingale and the price of the derivative is equal to:

E Q e -´S t rsds V (Y (T, S)) | F t = P (t, S)E S (V (Y (T, S)) | F t ) = P (t, S) ˆ+∞ 0 V (y)f Y (T,S) (y)dy
where f Y (T,S) (y) is the density of Y (T, S) under the forward measure. If B(t) points out here the market value of a cash account, B t = e ´t 0 rsds , the Radon Nykodym derivative dening the S-forward measure, is equal to:

dF S dQ = 1 B S B 0 P (0, S) = e ´S 0 rsds E Q e -´S 0 rsds |F 0 -1
To calculate the expected payo under F S , the easiest approach consists to approximate the probability density function of Y (T, S) by a Discrete Fourier Transform. To perform a such calculation, the moment generating function of the yield is needed:

Corollary 3.7. The moment generating function of Y (T, S) at time t ≤ T under the forward measure F S , denoted by ϕ t,S (w), is given by:

ϕ t,S (w) = E S e wY (T,S) | F t = exp w S -T ˆS T ϕ(s)ds + wX t × exp A T (t, T ) -A S (t, S) + B T 1 (t, T ) -B S 1 (t, S) B T 2 (t, T ) -B S 2 (t, S) λ 1Q T λ 2Q
T where A S (t, S) , B S 1 (t, S) and B S 2 (t, S) are solutions of the system of ODEs (46) with a maturity S and where A T (t, T ) , B T 1 (t, T ) and B T 2 (t, T ) are solutions of the following system of ODEs :

                 ∂ ∂t B T 1 (t, T ) = κ 1 B T 1 (t, T ) -ψ 1 B T 1 (t, T )δ Q 1,1 + (w -(S -t)) α 1 + B T 2 (t, T )δ Q 2,1 -1 ∂ ∂t B T 2 (t, T ) = κ 2 B T 2 (t, T ) -ψ 2 B T 1 (t, T )δ Q 1,2 -(w -(S -t)) α 2 + B T 2 (t, T )δ Q 2,2 -1 ∂ ∂t A T (t, T ) = -κ 1 c Q 1 B T 1 (t, T ) -κ 2 c Q 2 B T 2 (t, T ) (51) 
with the terminal conditions

A T (T, T ) = 1 -w S-T A S (T, S) , B T 1 (T, T ) = 1 -w S-T B S 1 (T, S), B T 2 (T, T ) = 1 -w S-T B S 2 (T, S).
Proof. By denition of the forward measure and using the fact that F t ⊂ F T , the Laplace transform of Y (T, S) is given by:

E S e wY (T,S) | F t = E Q e ´S 0 rsds E Q e -´S 0 rsds |F 0 -1 e wY (T,S) | F t e -´t 0 rsds E Q e -´S t rsds |F t E Q e -´S 0 rsds |F 0 -1 = E Q e -´T t rsds E Q e -´S T rsds+wY (T,S) | F T | F t E Q e -´S t rsds |F t .
The F T conditional expectation in this last equation, is also equal to

E Q e -´S T rsds+wY (T,S) | F T = e wY (T,S) E Q e -´S T rsds | F T ,
and, according the corollary 3.5, we have that:

E Q e -´S T rsds+wY (T,S) | F T = exp w S -T -1 ˆS T ϕ(s)ds -A S (T, S) × exp w S -T -1 X T (S -T ) - B S 1 (T, S) B S 2 (T, S) λ 1Q T λ 2Q
T and

E Q e -´S t rsds | F t = exp -X t (S -t) - ˆS t ϕ(s)ds + A S (t, S) + B S 1 (t, S) B S 2 (t, S) λ 1Q t λ 2Q t ,
Using the proposition (2.4) allows us to conclude.

The next result introduces the discretization framework to build the density of Y (T, S), under the forward measure. Note that it is possible to use the same algorithm to approach the distribution of r t under the real and risk neutral measure.

Proposition 3.8. Let M be the number of steps used in the Discrete Fourier Transform (DFT) and ∆ y = 2ymax M -1 be this step of discretization. Let us denote ∆ z = 2π M ∆y and

z j = (j -1)∆ z ,
for j = 1...M . The values of f Y (T,S) (.) at points y k = -M 2 ∆ y + (k -1)∆ y are approached by the sum:

f Y (T,S) (y k ) ≈ 2 M ∆ y Re   M j=1 δ j ϕ t,S (i z j , r t , λ t ) (-1) j-1 e -i 2π M (j-1)(k-1)   . (52) 
where δ j = 1 2 1 {j=1} + 1 {j =1} . Proof. The density of Y (T, S) is retrieved by calculating the Fourier transform of ϕ t,T (iz) as follows:

f Y (T,S) (y k ) = 1 2π F[ϕ t,S (iz)](y) = 1 2π ˆ+∞ -∞ ϕ t,S (iz) e -i y k z dz = 1 π Re( ˆ+∞ 0 ϕ t,S (iz)e -i y k z dz)
where the last equality comes from the fact that ϕ t,S (z) and ϕ t,T (-z) are complex conjugate. At points

y k = -M 2 ∆ y + (k -1)∆ y , this last integral is approached with the trapezoid rule ˆb a h(z)dz = h(a) + h(b) 2 ∆ z + M -1 k=1 h(a + k ∆ z )∆ z
and leads to the following estimate for f Y (T,S) (y k ):

f Y (T,S) (y k ) ≈ 1 π Re   M j=1 δ j ϕ t,S (iz j )e -i y k z j ∆ z   ≈ 1 π Re   M j=1
δ j ϕ t,S (iz j )(-1) j-1 e -i 2π M (j-1)(k-1) ∆ z

 

Once that the density of Y (T, S) is obtained by the discrete Fourier transform, the option price is approached by a weighted sum of payos:

E Q e -´T t rsds V (Y (T, S)) | F t = P (t, T ) M +1 k=1 V (y k )f Y (T,S) (y k )∆ y .
The feasibility of this method is illustrated for caplets, in the numerical application.

4 Calibration and numerical applications.

To demonstrate that the model is adequate for interest rate modeling, we rst perform an econometric calibration. The data set used is made up zero coupon rates, bootstrapped from daily Euro swap rates (bid-ask average), observed over ten years (3/05/2004 to 30/12/2014).

Swaps are liquid instruments, and their rates are representative of yields of AA corporate bonds.

The maturities of considered swaps are running from 1 to 10 years, 12 15 and 20 years. The Bloomberg tickers are EUSA1 to EUSA10, EUSA12, EUSA15 and EUSA20 and the eld is PX_LAST. Figure [START_REF] Acharya | Asset pricing with liquidity risk[END_REF] provides a three-dimensional plot of zero coupon rates. The large amount of temporal variation in the level is visually apparent. The attening of the curvature during the 2008 crisis, is also clearly visible. Table 1 shows descriptive statistics for swap rates. The typical curve is upward sloping and long term rates are less volatile and more persistent than short term rates (in the sense that their long term auto-correlation is higher). The parameters that dene the dynamics of the short term rate under the real measure, are tted to the time series of one year swap rates (presented in the rst subplot of gure 2).

Positive and negative jumps are both assumed to be exponential random variables, with means

1 ρ 1 and -1 ρ 2
. For this choice of distributions, parameters α 1 and α 2 are redundant and set to one. The function of time ϕ(t) is assumed constant and equal to the one year swap rate, on the 3/05/2004. In practice, ϕ(t) is used to perfectly duplicates the most recent yield curve and to exclude any possibilities of arbitrage in the pricing of interest rate derivatives. As our purpose is here econometric, setting ϕ(t) to a constant is not penalizing. Positive (1360 observations) and negative (1460 observations) variations of the one year rate are respectively assimilated to an increase of supply and increase of demand, the parameters ρ 1 and ρ 2 are adjusted by matching the rst moment. The intensities λ 1 t and λ 2 t are tted separately by direct log-likelihood maximization procedures. If daily variations of interest rates are denoted by ∆r i = r t i -r t i-1 for i = 1 to n = 2820 observations and ∆ t is the length of the time interval, the following two optimization problems are solved numerically to nd an estimate of parameters:

(κ 1 , c 1 , δ 1,1 , δ 1,2 ) = arg max n i=1 log λ 1 t i ∆ t 1 {∆r i >0} + (1 -λ 1 t i ∆ t )1 {∆r i ≤0} (κ 2 , c 2 , δ 2,1 , δ 2,2 ) = arg max n i=1 log λ 2 t i ∆ t 1 {∆r i <0} + (1 -λ 2 t i ∆ t )1 {∆r i ≥0}
where the intensity of the arrival of jumps is discretized as follows : The exact calculation of the total log-likelihood would require to estimate 2820 pdf by DFT given that the probability density function of r t depends on λ 1 t ,λ 2 t and does not admit a closed form expression. As this is computationally too intensive, the total log-likelihood of the model is instead approached by the following expression:

λ k t i = λ k t i-1 + κ k (c k -λ t i-1 )∆ t + δ k,1 |∆r i |1 ∆r i ≥0 + δ k,2 |∆r i |1 ∆r i ≥0 k = 1, 2 , i = 1, ..., n.
L = n i=1 ln 1 ∆r i ≥0 λ 1 t i ∆t + 1 -λ 2 t i ∆t ν 1 (∆r i )+ +1 ∆r i <0 λ 2 t i ∆t + 1 -λ 1 t i ∆t ν 2 (∆r i ) ,
the model replicates perfectly the market data. This is illustrated in the rst subplot of gure 4 by the curve labeled Best t. These parameters cannot be reconciled anymore with historical parameters, through an ane change of measure but does not appear irrelevant. We use them later to analyze the sensitivity of the model to each of its parameters.

The ve last subplots of the gure 4 shows the marginal eect of each parameter on the slope of the yield curve produced by the model. Increasing c 1 , δ 1,1 or δ 1,2 raises the frequency of positive variations of the interest rate, and then the steepness of the curve. Increasing c 2 , δ 2,2 or δ 2,1 steps up the frequency of negative variations of the short term rate and atten the yield curve. Using higher speeds of mean reversion, κ 1 and κ 2 , have the same eect on the curve. As the average size of orders are inversely proportional to ρ 1 and ρ 2 , increasing these parameters is equivalent to decrease the average amplitude of variations of the interest rate. Then higher ρ 1 or ρ 2 respectively lowers or raises the steepness of the curve. The gure 5 presents simulated sample paths for r t , λ 1 t and λ 2 t and their mean calculated under Q, with propositions 2.1 and 2.2. Simulated paths depict periods of decline, sharp increase and stability, that are comparable to real ones shown in gure 2. We also observe negative short term rates in two scenarios during the rst ve years, as the expected short term rate is close to 0%. In fact, the number of scenarios in which negative rates are generated, directly depends on parameters of mutual excitations δ 1,2 and δ 2,1 . The higher is δ 1,2 , the higher is the probability of observing an upward jump following a downward variation of interest rates and the lower is the probability of observing negative short term rates. This point is emphasized by the rst subplot of gure 6, that presents the probability density function (computed by DFT) of the forward yield, Y (2, 3) as dened by equation ( 49), for dierent levels of cross excitations. We see that setting δ 1,2 to zero is enough to exclude negative forward yields. The econometric analysis of the one year swap rate over a period of 10 years, suggests that intensities of bid/ask orders arrivals are key factors to understand the uctuations of rates. In particular, a negative dierence between bid and ask frequencies is a solid indicator to detect liquidity shortfalls. On another hand, combining the econometric calibration with the analysis of past swap curves, allows us to lter risk premiums of processes representing the demand and supply of bonds. The distance between these risk premiums explains the steepness of the yield curve and is particularly small during the 2008 crisis. Finally, the dierent sensitivity analysis developed in this work, conrm that the model is tractable for derivatives pricing or for risk management purposes.

  , Chavez-Demoulin et al. (2005) or Chavez-Demoulin and McGill (2012) test these processes in a risk management context. Whereas Dassios and Jang (2012) propose a bivariate process for applications in insurance.

T

  On another hand, the payo paid at time S ≥ T by an European option written on Y (T, S)is denoted by V (Y (T, S)). Examples of such instruments are: caplets (V (Y (T, S)) = N (S -T )[Y (T, S) -k] + ), oorlets ( V (Y (T, S)) = N (S -T )N [k -Y (T, S)] + ) or options of zero coupon bonds (V (Y (T, S)) = N [exp (-Y (T, S)(S -T )) -k] + ),where N and k are respectively the principal and the strike. The option price is the expectation of this discounted payo under the risk neutral measure:

Figure 1 :

 1 Figure 1: This graph shows the evolution of zero coupon rates, bootstrapped from swap curves, over a ten year period (3/05/2004 to 25/7/2014).

Figure 4 :

 4 Figure 4: The rst subplot shows the zero coupon yield curve, on the 28/11/2014 and the curves built with the model and sets of parameters of table 3. The ve last subplots illustrate the sensitivity of the yield curve produced by the model to changes of parameters.

Figure 5 :

 5 Figure 5: This graph displays three simulated sample paths of r t , and the intensity of arrivals of sell (λ 1t ) / buy (λ 2 t ) orders. The period is 10 years.

  T |F t , according to the Itô's lemma, it solves the next equation

Table 1 :

 1 ). Descriptive statistics, zero coupon rates bootstrapped from swap curves from 3/05/2004 to 25/7/2014. The two last columns contains sample auto-correlation at displacement of 175 days and 250 days of trading.

	Maturity	Mean	Std. dev.	Minimum	Maximum	ρ(175d)	ρ(250d)
	1	0.0217	0.0147	0.0029	0.0545	0.7929	0.6759
	2	0.0229	0.0140	0.0031	0.0548	0.8114	0.7315
	3	0.0245	0.0134	0.0038	0.0540	0.8222	0.7614
	4	0.0261	0.0127	0.0049	0.0528	0.8265	0.7746
	5	0.0277	0.0121	0.0062	0.0519	0.8271	0.7800
	6	0.0292	0.0115	0.0077	0.0513	0.8273	0.7837
	7	0.0305	0.0110	0.0093	0.0510	0.8265	0.7852
	8	0.0317	0.0105	0.0109	0.0508	0.8252	0.7855
	9	0.0327	0.0102	0.0124	0.0507	0.8232	0.7844
	10	0.0337	0.0099	0.0138	0.0509	0.8197	0.7813
	12	0.0353	0.0094	0.0161	0.0513	0.8114	0.7728
	15	0.0370	0.0090	0.0187	0.0516	0.7990	0.7596
	20	0.0380	0.0089	0.0187	0.0526	0.7904	0.7507

Table 2 :

 2 The results of the calibration procedure are presented in table2. The speeds of mean reversion for the intensities of supply and demand are close and around 3.90 . The δ 1,1 and δ 2,2 measure the level of self excitation and are positive. This conrms the presence of marginal clustering eects in the frequency of orders. The marginal eect of the demand on supply, such as measured by 2,1 is also negative and then an increase of supply decreases the frequency of demand orders. Compared to the self excitation, this eect is predominant on average as |δ 2,1 | 1 This table contains the parameters dening dX t under the real measure and their standard errors.

	ρ 1 > δ 2,2	1 ρ 2	. This

δ 1,2 , is negative. This means that an upward shift in demand decreases the frequency of supply orders. But as

|δ 1,2 | 1 ρ 2 < δ 1,1 1 ρ 1

, this eect is less signicant on average than the self excitation.

δ

Remark that E (.|F0) is abusively denoted by E (.) in later developments.

t , bid orders are not enough frequent compared to ask orders and the market is threatened by a liquidity shortfall. This scenario, happens from the 14/08/2007 to the 09/12/2008, the period that corresponds to the credit crunch crisis.

The econometric calibration is based on historical data and parameters obtained by a such approach dene the dynamics of r t under the real measure of probability P . To appraise parameters under the risk neutral measure, we nd the risk premiums θ 1 and θ 2 dening an equivalent measure by the equation ( 28) that minimizes the sum of spreads between model-based and observed yields. In practice, it is not relevant to assume that these premiums are constant over a period of 10 years, as they are directly related to the level of risk aversion in nancial markets.

We have then computed the risk premiums at regular interval of ve days of trading. The rst subplot of gure 3 shows their evolution: θ 1 and θ 2 are respectively positive and negative and nearly symmetric till 2013. The second subplot presents the evolution of ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) and ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ) that multiply parameters c 1 , c 2 and δ i,j under Q, as stated in the corollary 3.4. This graph reveals that parameters driving λ 1 t (resp. λ 2 t ) are always increased (resp. Jan-05 Jul-07 Jan-10 Jul-12 0.9 0.95

Figure 3: The rst subplot exhibits the history of risk premiums, appraised at regular interval of ve days. The second graph shows coecients ψ 1 (a

that multiply the parameters dening λ 1 t and λ 2 t under the risk neutral measure. decreased) under Q. And the steepness of the yield curve is directly related to the distance between ψ 1 (a 1 δ 1,1 + a 2 δ 2,1 + θ 1 ) and ψ 2 (a 2 δ 2,2 + a 1 δ 1,2 + θ 2 ). Around the credit crunch, yield curves are indeed nearly at and ψ 1 (a