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How to perform and report an impactful analysis using partial least squares: Guidelines for 

confirmatory and explanatory IS research 

Abstract 

Partial least squares path modeling (PLS-PM) is an estimator that has found widespread 

application for causal information systems (IS) research. Recently, the method has been subject to 

many improvements, such as consistent PLS (PLSc) for latent variable models, a bootstrap-based 

test for overall model fit, and the heterotrait-to-monotrait ratio of correlations for assessing 

discriminant validity. Scholars who would like to rigorously apply PLS-PM need updated 

guidelines for its use. This paper explains how to perform and report empirical analyses using 

PLS-PM including the latest enhancements, and illustrates its application with a fictive example 

on business value of social media.  

Keywords: Partial least squares path modeling, guidelines, model validation, composite model, 

confirmatory and explanatory information systems research.  

1. Introduction 

Structural equation modeling (SEM) has become an important statistical tool in social and 

behavioral sciences. It is capable of modeling nomological networks by expressing theoretical 

concepts through constructs and connecting these constructs via a structural model to study their 

relationships (Bollen 1989). In doing so, random measurement errors can be taken into account 

and empirical evidence for postulated theories can be obtained by means of statistical testing. 

Two kinds of estimators for SEM can be distinguished: covariance-based and variance-based 

estimators. While covariance-based estimators minimize the discrepancy between the empirical 

and model-implied variance–covariance matrix of the observable indicators to obtain the model 

parameter estimates, variance-based estimators create linear combinations of the indicators as 

stand-ins for the theoretical concepts and subsequently estimate the model parameters. A widely 



  

2 

 

used variance-based estimator is partial least squares path modeling (PLS-PM). Originally 

developed by Herman O.A. Wold (1975) to analyze high-dimensional data in a low-structure 

environment, PLS-PM has become a full-fledged estimator for SEM over the past decade 

(Henseler et al. 2016). Consequently, PLS-PM has been applied in various fields of business 

administration research such as strategy (Hair et al. 2012a), marketing (Hair et al. 2012b), 

operations management (Peng and Lai 2012), human resource management (Ringle et al. 2018), 

finance (Avkiran and Ringle 2018), tourism (Müller et al. 2018), and family business (Sarstedt et 

al. 2014). 

For decades, PLS-PM has been the predominant estimator for structural equation models in the 

field of information systems (IS) (e.g., Marcoulides and Saunders 2006, Ringle et al. 2012, 

Polites et al. 2012, Lowry et al. 2016, Rueda et al. 2017). IS research usually incorporates 

complex research problems and questions that require conceptualization and operationalization of 

theoretical concepts, and investigation of their relationships. Current literature suggests two types 

of theoretical concepts: concepts from behavioral sciences and concepts from design science 

(Henseler 2017a). Theoretical concepts from behavioral research are assumed to cause observable 

indicators and their relationships, i.e., the theoretical concept is the common cause of observable 

indicators (Reichenbach 1956). Typically, these concepts are operationalized by a measurement 

model. Extant literature suggests two types of measurement models: the reflective (Bollen 1989) 

and the causal–formative measurement model (Diamantopoulos 2011). Both types of 

measurement models assume a causal relationship between the indicators and their construct, i.e., 

the latent variable. In contrast, theoretical concepts from design science, so-called artifacts, are 

human-made creations that are shaped and built by their ingredients to serve a certain goal 

(Simon 1969). Due to the constructivist nature of this type of theoretical concept, recent literature 

suggests to operationalize artifacts by the composite model (Henseler 2017a). In contrast to the 
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measurement models, in the composite model, the indicators do not cause the construct, but 

combine to compose the construct. To highlight this aspect and to pronounce the difference to the 

latent variable, we refer to constructs that are composed of emergent variables (Cole et al. 1993, 

Hancock et al. 2000). In summary, IS scholars can operationalize a theoretical concept in three 

different ways in their model: reflective and causal–formative measurement model (usually 

employed for behavioral concepts), and composite model (usually employed for artifacts). See 

Table 1 in Henseler (2017) for a detailed explanation of the different types of operationalization. 

In recent years, PLS-PM has become the subject of scholarly debate. Proponents called PLS-

PM a “silver bullet” (Hair et al. 2011), while opponents criticized PLS-PM’s inconsistency for 

latent variable models and the absence of a test for overall model fit (e.g., Rönkkö and Evermann 

2013). This debate has stimulated the development of several enhancements to PLS-PM. These 

include consistent PLS (PLSc) to consistently estimate linear and non-linear latent variable 

models (Dijkstra and Schermelleh-Engel 2014, Dijkstra and Henseler 2015a); a bootstrap-based 

test to statistically assess overall model fit (Dijkstra and Henseler 2015b); measures of overall 

model fit, such as the standardized root mean squared residual (SRMR), based on heuristic rules 

to evaluate overall model fit (Henseler et al. 2014); and the heterotrait-to-monotrait (HTMT) ratio 

of correlations as a criterion to assess discriminant validity (Henseler et al. 2015). As a result, 

PLS-PM has become a full-fledged estimator to SEM that can deal with reflective and causal–

formative measurement models as well as composite models. Moreover, it can be applied to 

confirmatory, explanatory, exploratory, descriptive, and predictive research (Henseler 2018). 

For the field of IS to benefit from these methodological and conceptual achievements in PLS-

PM, IS scholars need guidelines for their empirical studies that incorporate all these new 

developments and recently obtained insights. Some of the guidelines papers on PLS-PM in the IS 

literature were published before 2013 – i.e., before the debate and resulting enhancements (e.g., 
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Chin 1998a, Gefen and Straub 2005, Marcoulides et al. 2009, Ringle et al. 2012). Although 

several recently published textbooks and articles (e.g., Hair et al. 2017a, 2017b, Sarstedt et al. 

2017) have provided guidelines for causal research that cover some of the latest enhancements in 

PLS-PM, neither of these prior PLS-PM guidelines for causal research covered the full range of 

recent developments.  

To fill this gap on guidelines in the current IS literature, this study provides updated guidelines 

for using PLS-PM in causal research (confirmatory and explanatory research), employing all the 

most recently proposed standards. In so doing, the paper addresses why and how to perform and 

report PLS-PM estimation in confirmatory and explanatory IS research. In confirmatory IS 

research, the scholar aims to understand the causal relationships between theoretical concepts of 

interest for the IS community. In doing so, the scholar aims to confirm a postulated theory, i.e., 

obtain empirical evidence for his/her description of the working mechanism of the world. This is 

tried to be achieved by imposing testable restrictions on the indicator variance–covariance matrix, 

e.g., by fixing path coefficients to a certain value, assuming that the correlation between two 

indicators is the result of an underlying latent variable like in the classical reflective measurement 

model, or in the composite model that the correlations of the indicators forming an emergent 

variable with a variable not forming the emergent variable are proportional. The dominant 

statistical tool in the context of confirmatory research is the test for overall model fit. Testing 

model fit only makes sense if the number of correlations among observable variables exceeds the 

number of model parameters to be estimated, i.e., it is indispensable to have a certain amount of 

parsimony (a positive number of degrees of freedom in the sense of SEM). 

As in confirmatory research, in explanatory IS research, the analyst aims to understand the 

causal relationship among the theoretical concepts. However, this type of research primarily 

focuses on the explanation of a specific phenomenon which is treated as a dependent variable in 
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the model. In doing so, the primary focus is on the coefficient of determination (R²) and the 

significance of path coefficient estimates. Such models can be saturated (i.e., have zero degrees 

of freedom in the sense of SEM). Although the two types of research can be theoretically 

distinguished, in empirical IS research, scholars very often combine confirmatory and 

explanatory IS research, e.g., testing the measurement model (confirmatory research) and 

focusing on the explanation of a specific construct in structural model (explanatory research). 

This paper explains why and how to perform and report empirical analyses using PLS-PM in 

causal IS research following the latest enhancements, and illustrates this analysis with a fictive 

example on business value of social media.  

2. Foundations of PLS-PM 

In its current form, PLS-PM is a full-fledged variance-based estimator for SEM that can estimate 

linear, non-linear, recursive, and non-recursive structural models (Dijkstra and Schermelleh-

Engel 2014, Dijkstra and Henseler 2015b). Moreover, it is capable of dealing with models that 

contain emergent and latent variables (Dijkstra and Henseler 2015a), second-order emergent 

variables built by latent variables (Van Riel et al. 2017), and ordinal categorical indicators 

(Schuberth et al. 2018). It can incorporate sampling weights known as weighted partial least 

squares (WPLS, see Becker and Ismail 2016), deal with correlated measurement errors within a 

block of indicators (Rademaker et al. forthcoming), and address multicollinearity among the 

constructs in the structural model (Jung and Park 2018). It can also be used for multiple group 

comparison (Sarstedt et al. 2011, Klesel et al. forthcoming), and potential sources of endogeneity 

can be addressed (Hult et al. 2018). Finally, important-performance map analysis can be used to 

illustrate the results of the structural model (Ringle and Sarstedt 2016). For a recent overview of 

the methodological research on PLS-PM, we refer to Khan et al. (forthcoming). 
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2.1. Model specification 

To employ PLS-PM, scholars must transfer their proposed theory into a statistical model (Rigdon 

et al. 2017). In the context of SEM, this means that the theoretical concepts and their 

hypothesized relationships must be transferred into a structural model. “Theoretical concepts 

refer to ideas that have some unity or something in common. The meaning of a theoretical 

concept is spelled out in a theoretical definition” (Bollen 2011). We distinguish between two 

types of theoretical concepts: behavioral concepts, and design concepts, so-called artifacts. 

Typically, theoretical concepts are represented by constructs in the structural model (Rigdon 

2012). Although constructs and latent variables are often equated (Bagozzi and Yi 2012), we 

deliberately distinguish between a latent variable, i.e., a construct that represents a behavioral 

concept, and an emergent variable, i.e., a construct that represents an artifact. The 

operationalization of theoretical concepts, i.e., the specification of the theoretical concepts in the 

structural model, requires special attention because estimates are likely to be inconsistent if a 

concept’s operationalization is not in accordance with the concept’s nature (Sarstedt et al. 2016). 

PLS-PM can deal with two kinds of constructs: emergent variables and latent variables. Latent 

variables refer to variables that are not directly observed but instead inferred through a 

measurement model from other observed variables (directly measured; Borsboom et al. 2003, 

Hair et al. 2017a). They usually represent theoretical concepts of behavioral research such as 

personality traits, individual behavior, and individual attitude (Henseler 2015). This theoretical 

reasoning rests on the assumption that behavioral concepts of interest exist in nature, irrespective 

of scholarly investigation (Bollen and Hoyle 2012). The existing literature proposes two ways to 

measure behavioral concepts (Bollen 2011): reflective and causal–formative measurement model. 
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The reflective measurement model – also known as the common factor model – is grounded in 

the true score theory (Spearman 1904). It assumes that a set of indicators is a measurement error–

prone manifestation of an underlying latent variable (Jöreskog 1969). Some indicators can thus be 

interchanged without altering the meaning of the latent variable. As the measurement errors of a 

block of indicators are usually assumed to be uncorrelated and independent of the latent variable, 

the reflective measurement model imposes restrictions on the variance–covariance matrix of 

indicators belonging to one latent variable. In its classical form, the correlations among the 

indicators of one block are zero when controlled for the latent variable, also known as the axiom 

of local independence (Lazarsfeld 1959). This fact is typically exploited to draw conclusions 

about the existence of the latent variable. 

Besides the reflective measurement model, the literature proposes the causal–formative 

measurement of behavioral concepts (Diamantopoulos 2008, Bollen and Diamantopoulos 2017). 

In contrast to the reflective measurement model, the causal–formative measurement model 

reverses the direction of causality between the indicators and the construct and assumes that the 

observed indicators cause the latent variable. This model thus does not restrict the covariances of 

the indicators belonging to one block. The remaining causes not represented by the indicators are 

captured in an error term, which is by assumption uncorrelated with the causal indicators. 

Although a violation of this assumption, i.e., omission of causal indicators, leads to biased 

parameter estimates of the causal indicators, recent literature shows that the meaning of the latent 

variable is not affected by omitting causal indicators and the remaining model parameters can be 

consistently estimated (Aguirre-Urreta et al. 2016). However, the causal–formative measurement 

model is not identified on its own, i.e., the model parameters cannot be uniquely retrieved from 

the population indicator variance–covariance matrix (Bollen and Lennox 1991, Rönkkö et al. 

2015). To obtain an identified causal–formative measurement model, the latent variable must be 
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connected to at least two other variables not affecting the latent variable (Diamantopoulos 2011), 

for example, using a multiple-indicators, multiple-causes (MIMIC) model. 

Typical examples of behavioral concepts in IS that have been operationalized by a 

measurement model are behavioral intention to use information technology (IT), and IT 

interaction behavior. Behavioral intention to use IT indicates the degree to which a person has 

formulated conscious plans to perform or not to perform a specified future behavior involving IT 

use. This concept has been operationalized by a reflective measurement model in past IS research 

using the following items: user’s intention, prediction, and plan to use IT in future months (e.g., 

Davis 1989, Venkatesh et al. 2008). IT interaction behavior refers to the user’s interaction with IT 

to accomplish an individual or organizational task. This concept has been operationalized by a 

causal–formative measurement model in past IS research. For example, Barki et al. (2007) 

employed a MIMIC model to operationalize IT interaction behavior using six tasks (causes) that 

motivated users to interact with IT (problem solving, justifying decisions, exchanging 

information with people, planning or following up, coordinating activities, and serving 

customers); and two measurements of this behavior using two reflective indicators (importance of 

IT and time invested using IT). 

Emergent variables are an alternative representation of theoretical concepts (Cole et al. 1993, 

Hancock et al. 2000). They have been recently referred in empirical IS research as “composite 

constructs” (e.g., Benitez et al. 2018a). Although these labels could be used interchangeably, we 

recommend using the term “emergent variable” to highlight that the construct emerges from the 

indicators. Emergent variables can help model artifacts (Henseler et al. 2016, Henseler 2017a). 

An artifact is a human- or firm-made object composed of its ingredients. Thus, in contrast to 

behavioral concepts, they are not assumed to exist in nature, but are products of theoretical 

thinking and/or theoretically justified constructions usually made to fulfill a certain purpose. To 



  

9 

 

operationalize these human- or firm-made concepts, the composite model can be employed 

(Henseler 2017a). Examples from the IS research are IT capability and IT ambidexterity (Benitez 

et al. 2018b, Benitez et al. 2018c).  

The composite model can be understood as a recipe for how ingredients (the components) 

should be mixed and matched to build the artifact. The composite model assumes a definitorial 

rather than a causal relationship between indicators and the emergent variable (Henseler 2015, 

2017). In the classical composite model, the indicators forming an emergent variable are assumed 

to be free of measurement errors. In contrast to the reflective measurement model, the composite 

model imposes no restrictions on the covariance structure of indicators belonging to the same 

construct. The reflective measurement model is thus nested within the composite model, as the 

composite model relaxes the assumption that all covariation among a block of indicators is 

explained by one latent variable (Henseler et al. 2014). Yet, the composite model constraints the 

correlations between the indicators forming an emergent variable and variables not forming the 

emergent variable, i.e., they are proportional (Schuberth et al. 2018). Similar to the causal–

formative measurement model, the composite model is not identified when isolated in the 

structural model. To ensure identification, a necessary condition is that each emergent variable 

must be linked to at least one variable not forming the emergent variable (Dijkstra 2017, 

Schuberth et al. 2018). 

Because the artifact as a type of theoretical concept was introduced only recently, it is helpful 

to illustrate this type of theoretical concept with an example. Based on theory, bread is made from 

wheat, water, salt, and yeast. Although the correlations between the amounts of wheat, water, salt, 

and yeast in a sample of loaves of bread are likely to be high, one would not conclude that bread 

is something that should be measured, i.e., that bread causes (or is caused by) wheat, water, salt, 

and yeast. Rather, wheat, water, salt, and yeast are the simple entities (ingredients) combined to 
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form the emergent variable representing the artifact we call bread. Clearly, the temporal 

precedence of the ingredients also suggests that bread cannot be the common cause of its 

ingredients. 

Because IS Science analyzes and aims at explaining how IT affects organizations, individuals, 

and society, artifacts play a pivotal role in IS research. For example, the theoretical concept IT 

infrastructure capability refers to a firm’s ability to use and leverage its IT resource infrastructure 

for business activities (Benitez and Walczuch 2012, Chen et al. 2015, Ajamieh et al. 2016, Chen 

et al. 2017). IT infrastructure capability is a “human-made/firm-made” concept that can be 

operationalized by the composite model (Ajamieh et al. 2016, Benitez et al. 2018a, Benitez et al. 

2018d). Of course, no single “true” recipe exists for creating this artifact. Just as different 

bakeries can produce different types of bread or different breweries produce different types of 

beer, different scholars can produce different recipes for the same concept. The beer analogy can 

be extraordinarily instructive. Different recipes exist worldwide to design and manufacture beer. 

For example, Spanish breweries use one recipe, German breweries another. Recipes can even 

vary by region within a country. Such diversity makes each recipe an idiosyncratic way to 

understand and design beer, but all of these recipes ultimately produce beer. 

For example, based on Melville et al.’s (2004) study, Ajamieh et al. (2016) define the artifact 

IT infrastructure capability as composed of IT technological infrastructure capability, IT 

managerial infrastructure capability, and IT technical infrastructure capability. Further, some 

prior IS research (Bharadwaj 2000, Santhanam and Hartono 2003) considers IT capability – a 

concept similar to IT infrastructure capability – as composed of IT technical infrastructure, 

human IT resources, and IT-enabled intangibles. IT infrastructure flexibility and post-merger and 

acquisition (M&A) IT integration capability are two examples of artifacts recently considered in 

IS research (Benitez et al. 2018d). IT infrastructure flexibility refers to the capability of the 
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infrastructure to adapt to environmental changes. A flexible firm IT infrastructure has the 

following characteristics: IT compatibility, IT connectivity, modularity, and IT personnel skills 

flexibility (Benitez et al. 2018d). Similarly, post-M&A IT integration capability is the firm’s 

ability to integrate the IT technical infrastructure, IT personnel, and IT and business processes of 

the target/acquired firm with the IT technical infrastructure, IT personnel, and IT and business 

processes of the acquirer after an M&A (Benitez et al. 2018d). Thus, post-M&A IT integration 

capability can be understood as an artifact built by integrating IT technical infrastructure, IT 

personnel, and IT and business processes. These are two examples of artifacts that have recently 

been examined in the field of IS.  

While this study argues for the use of the composite model to operationalize artifacts, recently 

it has been suggested to employ the composite model to operationalize behavioral concepts 

(Rigdon et al. 2017). This notion assumes that both latent and emergent variables serve as a proxy 

for behavioral concepts (Sarstedt et al. 2016). Following this reasoning, the validity gap occurs 

between the concept and its construct and not between the construct and the observable variables 

(Rigdon 2012).  

Once the theoretical concepts are operationalized, the constructs representing the theoretical 

concepts can be related via the structural model. The structural model typically represents the 

core of the theory proposed. The structural model generally consists of a set of regression 

equations, illustrating the relationship hypothesized between the theoretical concepts. In each 

equation, a dependent construct is explained by one or more independent constructs. Because a 

dependent construct is typically not fully explained by its independent constructs, an error term 

accounts for the remaining variance in the dependent construct. By assumption, the error term is 

independent of the explanatory constructs of its equation. To avoid violating this assumption, in 

causal IS research, the scholar should make every effort to include all relevant constructs (those 



  

12 

 

that affect the dependent construct and correlate with at least one explanatory construct in the 

corresponding equation). Otherwise, the path coefficient estimates obtained by ordinary least 

squares (OLS) suffer from omitted variable bias (Wooldridge 2013). One potential way to 

address this problem of endogeneity is to use the two-stage least squares (2SLS) estimator for the 

structural model (Dijkstra and Henseler 2015b, Benitez et al. 2016, Hult et al. 2018). In the 

following, we consider only recursive structural models, structural models without feedback 

loops, and/or correlated error terms. 

2.2. Parameter estimation 

In its current form, PLS-PM estimates model parameters in three steps. In the first, the iterative 

PLS-PM algorithm determines the weights to create scores for each construct (latent variables 

and emergent variables; Lohmöller 1989). As construct scores of latent variables contain 

measurement errors, the second step corrects for attenuation in correlations between latent 

variables. In doing so, PLSc divides the construct scores correlations by the geometric mean of 

the constructs’ reliabilities (Dijkstra and Henseler 2015a), making the main outcome of the 

second step a consistent construct correlation matrix. Finally, the third step estimates the model 

parameters (weights, loadings, and path coefficients). Based on the consistent construct 

correlation matrix, OLS can be used to estimate the path coefficients of recursive structural 

models. In case of non-recursive structural models, the 2SLS or three-stage least squares (3SLS) 

estimator can be used, instead of the OLS estimator, to obtain consistent path coefficient 

estimates (Dijkstra and Henseler 2015b, Benitez et al. 2016, Benitez et al. 2018d).  

2.3. Substantial changes in the understanding of PLS-PM 

In recent years, PLS-PM practices have been examined, debated, and improved. The recent 

literature on PLS-PM has been thus substantially changed and improved, requiring that we 
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identify the changes in the understanding and practice of PLS-PM. Table 1 summarizes these 

changes in the understanding of PLS-PM in the context of confirmatory and explanatory research. 

 Traditional view 1: PLS-PM should be used primarily for exploratory and early-stage 

research. Although PLS-PM was originally developed for exploratory research (Wold 1975), 

enhancements such as PLSc and the bootstrap-based test for overall model fit make PLS-PM 

suitable for causal research, i.e., confirmatory and explanatory research. However, as originally 

developed, PLS-PM can also be applied in descriptive and predictive research (Shmueli et al. 

2016, Henseler 2018).   

Traditional view 2: PLS-PM has advantages over covariance-based estimators in the case of 

small sample sizes. The application of PLS-PM has often been justified by the size of the 

investigated sample (Rigdon 2016). It is true that PLS-PM is capable of estimating models with 

more parameters than observations because it only estimates partial model structures, but as with 

every other statistical method, the standard errors of the estimates increase as the sample size 

decreases. Therefore, justifying the use of PLS-PM due to small sample sizes should be 

considered cautiously. In this sense, claiming that PLS-PM is particularly suitable for small 

sample sizes can be regarded as problematic (Rigdon 2016). However, in case of pure emergent 

variable models and small sample size constellations, PLS-PM performs superior focusing on 

accuracy in the estimation of path coefficients compared to other variance-based estimators (Hair 

et al. 2017c), i.e., generalized structured component analysis (GSCA, Hwang and Takane 2004) 

and regression with sum scores. 
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Table 1: Substantial changes in understanding of PLS-PM 
Traditional view of PLS-PM Up-to-date view of PLS-PM 

1. PLS-PM should be used primarily for 

exploratory and early-stage research 

PLS-PM can be used for various types of research, 

e.g., confirmatory and explanatory or predictive 

(Henseler et al. 2014, Shmueli et al. 2016, 

Henseler 2018)  

2. PLS-PM has advantages over covariance-based 

estimators when the sample size is small 

PLS-PM can produce estimates even for very 

small sample sizes. However, as for other 

estimators, these estimates are generally less 

accurate than those obtained by a larger sample 

(Goodhue et al. 2012, Rigdon 2016). Hence, the 

justification of using PLS-PM with small sample 

sizes should be considered cautiously 

3. PLS-PM can only estimate recursive structural 

models 

PLS-PM can also consistently estimate non-

recursive structural models by using, e.g., 2SLS or 

3SLS instead of OLS (Dijkstra and Henseler 

2015b, Benitez et al. 2016) 

4. Model identification plays no role when 

employing PLS-PM 

First, PLS-PM always estimates an underlying 

composite model, regardless of whether the model 

consists of latent variables; identification rules of 

composite models must thus be taken into account 

(Dijkstra 2017, Schuberth et al. 2018). 

Consequently, model identification is also 

important in the case of PLS-PM 

5. PLS-PM has greater statistical power than the 

maximum-likelihood (ML) estimator 

This statement is based on inconsistent parameter 

estimates and has been shown to be invalid 

(Goodhue et al. 2017). Furthermore, an estimator 

has no statistical power (one refers to its 

efficiency, or accuracy, in estimating parameters, 

usually expressed by the standard error); only a 

statistical test can be assessed in terms of its 

statistical power  

6. Mode A can be used to consistently estimate 

reflective measurement models 

Regardless of the mode used, PLS-PM creates 

linear combinations of observed indicators 

(composites) as proxies for the theoretical 

concepts (Dijkstra and Henseler 2011, Rigdon 

2012). Therefore, to consistently estimate models 

containing latent variables, one must correct for 

attenuation of the construct scores correlations. In 

the context of PLS-PM, this procedure is known 

as PLSc (Dijkstra and Henseler 2015a, 2015b) 

7. Mode B can be used to estimate causal–

formative measurement models consistently 

Mode B is just another way to obtain weights to 

build composites; hence, it does not consistently 

estimate causal–formative measurement models. 

However, causal–formative measurement models 

can be estimated by means of a MIMIC model 

(Diamantopoulos 2011, Henseler et al. 2016) 

8. The overall fit of models estimated by PLS-PM 

cannot be assessed 

The overall model can be assessed in two non-

exclusive ways (Henseler et al. 2014, Dijkstra and 

Henseler 2015b): (1) bootstrap-based tests for 
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overall model fit, and (2) measures of overall 

model fit. Both assess the discrepancy between the 

empirical and the model-implied indicator 

variance–covariance matrix. While the latter is 

based on heuristic rules, the former is based on 

statistical inferences 

9. Reliability of construct scores obtained by PLS-

PM should be assessed using Cronbach’s α and 

Dillon–Goldstein’s ρ (also called Jöreskog’s ρ or 

composite reliability) 

Currently, Dijkstra–Henseler’s ρA is the only 

consistent reliability coefficient for PLS-PM 

construct scores (Henseler 2017a). Dillon–

Goldstein’s ρ and Cronbach’s α indicate the 

reliability of sum scores. While Cronbach’s α is 

based on the indicator variance–covariance matrix, 

Dillon–Goldstein’s ρ is based on the factor 

loadings. Therefore, for the calculation of Dillon–

Goldstein’s ρ, consistent factor loading estimates 

should be used. Moreover, Cronbach’s α assumes 

equal population covariances among the indicators 

of one block; an assumption that is likely not met 

in empirical research. However, it can be used as a 

lower bound to reliability (Guttman 1945, Sijtsma 

2009) 

10. Discriminant validity should be examined 

using the Fornell–Larcker criterion 

The HTMT (Henseler et al. 2015) should be 

considered to assess discriminant validity 

(Voorhees et al. 2016, Franke and Sarstedt 

forthcoming) 

 

Traditional view 3: PLS-PM cannot be used for non-recursive models. Although current 

user-friendly software packages do not yet implement approaches to analyzing non-recursive 

models, the assumption of recursivity can be relaxed by estimating the structural model 

parameters using 2SLS or 3SLS instead of OLS (Dijkstra and Henseler 2015b, Benitez et al. 

2016). Another approach to estimate non-recursive structural models involves using the construct 

scores (in the case of emergent variables) or the disattenuated construct correlation matrix (in the 

case of latent variables) obtained by PLS-PM as input for the full-information maximum-

likelihood (FIML) estimator (e.g., Benitez et al. 2018d).  

Traditional view 4: Model identification plays no role when employing PLS-PM. PLS-PM 

always employs composites to estimate the model, whether or not the theoretical concepts are 

operationalized by a measurement model or a composite model. Therefore, the identification 



  

16 

 

rules for composite models must be applied (Dijkstra 2017, Schuberth et al. 2018). In addition to 

normalization of the weight vector such as fixing the variance of each composite to one, it must 

be ensured that each construct is connected (by means of a non-zero path) with at least one other 

construct in the model to ensure that the weights can be uniquely retrieved from the population 

indicator variance–covariance matrix. Although all weight vectors are scaled and no construct is 

isolated in the structural model, the signs of the weights of a block of indicators are still 

ambiguous. The dominant indicator approach is thus recommended to fix construct scores’ 

orientation and thereby uniquely determine the weights (Henseler et al. 2016). Additionally, the 

structural model must be identified. As long as one only considers recursive structural models 

with uncorrelated error terms, identification is straightforward as they are always identified 

(Bollen 1989).  

Traditional view 5: PLS-PM has greater statistical power than the ML estimator. In 

estimating latent variable models, Reinartz et al. (2009) claim that the power of statistical testing 

is higher when PLS-PM estimates are employed than when ML estimates are used. However, 

these findings are highly questionable, as they are based on traditional PLS-PM, which is known 

to produce inconsistent parameter estimates for latent variable models. In line with Goodhue et al. 

(2017), who show that this alleged higher power goes along with an inflated type I error, we 

conclude that preferring PLS-PM over the ML estimator due to efficiency is not a valid argument 

for latent variable models. Similar findings observed for GSCA are applicable to PLS-PM 

(Henseler 2012). For emergent variable models, however, traditional PLS-PM has shown 

favorable properties among variance-based estimators, i.e., GSCA, sum scores, and PLS-PM 

(Hair et al. 2017c).  
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Traditional view 6: Mode A can be used to consistently estimate reflective measurement 

models. In its most modern appearance, PLS-PM can deal with models containing both emergent 

and latent variables. Because PLS-PM inherently estimates composite models (Dijkstra and 

Henseler 2011, Rigdon 2012), it is the estimator of choice for models containing emergent 

variables only (Sarstedt et al. 2016). In PLS-PM, composite models can be consistently estimated 

by Mode B (Dijkstra 2017). To obtain consistent parameter estimates for reflective measurement 

models, PLSc should be used. Estimates obtained by traditional Mode A, or Mode B and C as 

well, suffer from the attenuation bias (Dijkstra and Henseler 2015b). In contrast, PLSc produces 

consistent and asymptotically normal estimates for reflective measurement models by combining 

Mode A estimates with a correction for attenuation (Dijkstra and Henseler 2015a). Consequently, 

the development of PLSc (Dijkstra and Henseler 2015a) enables PLS-PM to analyze models 

containing both emergent and latent variables. However, scholars should use Mode B in PLS-PM 

(instead of PLSc) when they estimate pure emergent variable models as PLSc has shown to 

produce biased estimates in this situation (Sarstedt et al. 2016). 

That being said, in the case of pure latent variable models, covariance-based estimators are 

preferred, as they are consistent and asymptotically efficient. However, the availability of 

asymptotically efficient estimators does not mean that scholars cannot use PLS-PM to estimate 

models of this kind. First simulation studies have investigated the performance of PLSc to other 

estimators in this situation and in fact, its usage for pure latent models is considered as acceptable 

and its bias for finite samples has been evidenced of little practical relevance assuming that the 

model is correctly specified (Dijkstra and Henseler 2015b, Sarstedt et al. 2016, Takane and 

Hwang 2018).  
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Traditional view 7: Mode B can be used to estimate causal–formative measurement models 

consistently. Mode B, or so-called regression weights, cannot be used to consistently estimate 

causal–formative measurement models, as this kind measurement model is not identified by its 

own (Diamantopoulos et al. 2008). However, by the development of PLSc, PLS-PM can 

consistently estimate causal–formative measurement models by means of the MIMIC model 

(Henseler 2017a). 

Traditional view 8: Overall fit of models estimated by PLS-PM cannot be assessed. Due to 

recent developments in the context of PLS-PM, the overall fit of models estimated by PLS-PM 

can be assessed in two non-exclusive ways: (1) by a bootstrap-based test for overall model fit 

(Dijkstra and Henseler 2015b), and (2) by measures of overall model fit such as the SRMR 

(Henseler et al. 2014). Both ways assess the difference between the empirical indicator variance–

covariance matrix and the estimated model-implied counterpart. While the empirical indicator 

variance–covariance matrix contains the variances and covariances of the indicators based on the 

sample, the estimated model-implied counterpart contains the variances and covariances of the 

indicators implied by the model structure based on the estimated model parameters. Typically, the 

discrepancy between the two matrices is measured by the squared Euclidean distance (dULS), the 

geodesic distance (dG), and the SRMR. The bootstrap-based test for overall model fit relies on a 

bootstrap procedure to obtain the reference distribution of the distance measures under the null 

hypothesis that the population indicator variance–covariance matrix equals the model-implied 

counterpart (Beran and Srivastava 1985). Assuming a 5% level of significance, a discrepancy 

value larger than the 95% quantile of the corresponding reference distribution leads to rejection 

of the null hypothesis. In addition to the bootstrap-based test for overall model fit, the values of 

the distance measures can be compared to threshold values recommended by the literature to 

assess overall model fit. Measures of fit are thus based on heuristic rules rather than on statistical 
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inference. Moreover, the suggested thresholds for the measures of overall model fit in the context 

of PLS-PM, e.g., 0.080 for the SRMR, are preliminary and need to be examined in more detail in 

future research. 

Traditional view 9: Reliability of the construct scores obtained by PLS-PM should be 

assessed using Cronbach’s α and Dillon–Goldstein’s ρ (also called Jöreskog’s ρ or composite 

reliability). Traditionally, the literature recommended determining the reliability of PLS-PM 

construct scores through Cronbach’s α and Dillon–Goldstein’s ρ (Ringle et al. 2012). However, 

considering this recommendation, several aspects of these two measures have been widely 

neglected. First, Cronbach’s α and Dillon–Goldstein’s ρ both assess the reliability of sum scores 

(construct scores obtained by equally weighted indicators) created for the latent variable. 

However, PLS-PM allows the indicator weights used for the calculation of the construct scores to 

vary such that indicators with a smaller amount of random measurement error take on greater 

weight than indicators containing a larger amount of random measurement error. Consequently, 

the PLS-PM construct scores contain less measurement error and are generally more reliable than 

sum scores (Henseler et al. 2014). Second, Cronbach’s α assumes tau-equivalence, i.e., equal 

population covariances among the indicators belonging to one latent variable, an assumption that 

is rarely met in empirical research (Sijtsma 2009). While Cronbach’s α can be calculated based on 

the sample variance–covariance matrix, Dillon–Goldstein’s ρ is based on factor loadings. 

Because traditional PLS-PM is known to produce inconsistent factor loading estimates, Dillon–

Goldstein’s ρ should be based on consistent factor loading estimates obtained by PLSc. 

Furthermore, as the assumptions of Cronbach’s α and Dillon–Goldstein’s ρ are likely to be 

violated in empirical research, their use cannot be recommended. However, the reliability 

obtained by Cronbach’s α can be regarded as a lower bound (Guttman 1945). To consistently 
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estimate the reliability of latent variable scores obtained by PLS-PM’s Mode A, Dijkstra–

Henseler’s ρA should be used (Dijkstra and Henseler 2015a). 

Traditional view 10: Discriminant validity should be examined by the Fornell–Larcker 

criterion. Although the Fornell–Larcker criterion (Fornell and Larcker 1981) had been long 

recommended to assess discriminant validity of latent variables (Ringle et al. 2012), it is 

ineffective in combination with traditional PLS-PM because it relies on consistent factor loading 

estimates (Henseler et al. 2014). To overcome this drawback, the HTMT was developed to assess 

discriminant validity in the case of variance-based estimators (Henseler et al. 2015). The HTMT 

can be assessed in two ways: (1) by comparing it to a threshold value, and (2) by constructing a 

confidence interval to examine whether HTMT is significantly smaller than a certain threshold 

value (Henseler et al. 2015, Franke and Sarstedt forthcoming). For the first approach, simulation 

studies suggest a threshold value of 0.90 if constructs are conceptually very similar or 0.85 if the 

constructs are conceptually more distinct (Henseler et al. 2015, Voorhees et al. 2016, Franke and 

Sarstedt forthcoming). For the second approach, prior methodological research has suggested to 

examine whether HTMT is significantly smaller than 1 (Henseler et al. 2015) or below other 

smaller values, e.g., 0.85 or 0.90 (Franke and Sarstedt forthcoming). Franke and Sarstedt 

(forthcoming) conclude that HTMT is a reliable tool for assessing discriminant validity, whereas 

the Fornell–Larcker criterion has limitations that do not justify its reputation for rigor and its 

widespread use in empirical research. 

3. An illustrative example 

3.1. Description of the example 

We provide an illustrative IS example to present the latest enhancements of PLS-PM. Figure 1 

displays the proposed research model to be estimated and tested. For this purpose, we use a 

simulated dataset of 300 observations, where each observation represents a firm – the unit of 
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analysis in the example. Because we use a simulated dataset, the obtained results are not 

scientifically relevant and any comparison of our results to results of other empirical studies is 

only made for purely illustrative purposes. 

Social executive behavior is the positive/negative behavior of the firm’s top managers towards 

the firm’s use of social media for business activities. Social employee behavior is the 

positive/negative behavior of the firm’s employees towards the firm’s use of social media for 

business activities. Social media capability refers to the firm’s ability to use and leverage external 

social media platforms purposefully to execute business activities (Benitez et al. 2018b, Braojos 

et al. 2019). Business process performance is the firm’s relative performance in key business 

processes as compared with its key competitors (Tallon and Pinsonneault 2011). Figure 1 

presents the research model of the example. Based on prior IS research on social media in 

organizations (Aral et al. 2013, Benitez et al. 2018b), it is assumed that social executive behavior 

and social employee behavior positively affect development of a firm’s social media capability, 

which, in turn, may positively influence firm’s business processes performance.  
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Figure 1:  Research model (CV = Control variables) 

 

The research model represents the theory proposed by an author/team to be tested empirically. 

It illustrates how the theoretical concepts are operationalized, i.e., how the indicators are related 

to the constructs representing the theoretical concepts, and how these constructs are connected. It 

usually includes several hypotheses to be tested. Based on prior literature and anecdotal evidence 

from the real world, authors should explain one by one why the hypothesized relationships are 

included and state expectations about their signs. These explanations are omitted from this article 

because theoretical explanation of the relationships included in the example is beyond the paper’s 

scope. In our example, the following three hypotheses are tested: 

Hypothesis 1 (H1): Social executive behavior has a positive impact on the development of 

social media capability. 

Hypothesis 2 (H2): Social employee behavior has a positive impact on the development of 

social media capability. 
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Hypothesis 3 (H3): Social media capability has a positive impact on business process 

performance. 

Although prior IS studies using PLS-PM have investigated more complex models (e.g., 

including a greater number of constructs, second-order constructs, moderation effects), the 

presented research model seems reasonable for our purposes due to the following three reasons: 

(1) the goal of our study is to provide guidelines for using PLS-PM in causal IS research 

(confirmatory and explanatory), employing the most recently proposed standards. In sake of 

brevity, parsimony, and pedagogical illustration for IS scholars, we think, in line with Occam’s 

razor, the simpler the research model is, the better. "Parsimonious yet well-fitting models are 

more likely to be scientifically replicable, explainable" (Sharma et al. forthcoming, p. 6). 

“Parsimony is also regarded by many social scientists as an important ingredient in theory 

development (e.g., Gregor, 2006; Simon, 2001), precisely because it ‘explains much by little’ 

(Friedman, 1994; p.153)” (Sharma et al. forthcoming, p. 11); (2) the considered model contains 

both latent variables (ovals) and emergent variables (hexagons), and therefore, presents a 

situation in which PLS-PM can leverage its full capacities; and (3) the research model is 

theoretically positioned in IS literature on business value of IT, where the research models are 

usually parsimonious (e.g., Rai et al. 2006, Saraf et al. 2007). 

Theoretical concepts of behavioral research such as personality traits, individual behavior, and 

individual attitude are usually represented as latent variables (Churchill 1979). Because social 

executive behavior and social employee behavior indicate types of individual behavior and 

attitude, the two theoretical concepts were operationalized by reflective measurement models. 

The ovals represent the latent variables and the connected rectangles their indicators. Social 

executive behavior and social employee behavior were each measured by four indicators, 
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(SEXB1-SEXB4) and (SEMB1-SEMB4), respectively. To obtain consistent estimates, the 

reflective measurement models were estimated by PLSc (Dijkstra and Henseler 2015a). 

In contrast, the theoretical concepts social media capability and business process performance 

were considered as artifacts designed by firms, executives, and/or employees. To operationalize 

these theoretical concepts, the composite model was employed. In doing so, social media 

capability is assumed to be composed of the following ingredients: Facebook, Twitter, corporate 

blog(s), and LinkedIn capabilities (Benitez et al. 2018b), which are the ingredients that shape 

social media capabilities and are lower-order capabilities. IS scholars and analysts from other 

contexts (e.g., China) might consider the social media WeChat (capability) as a key ingredient of 

social media capability and might remove other, less relevant social media capabilities for 

Chinese firms. This illustrates the potential of including/studying different artifacts to investigate 

the same phenomenon of interest for firms and society. The artifact business process performance 

was also operationalized by a composite model. It comprises supplier relations, product and 

service enhancement, production and operations, marketing and sales, and customer relations 

(Tallon and Pinsoneault 2011). Figure 2 illustrates how the artifact social media capability was 

operationalized. The hexagon represents the construct, i.e., the emergent variable, while the 

rectangles represent ingredients forming the construct. 
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Figure 2: Operationalization of the artifact social media capability 

 
Besides the variables of main interest, firm size and industry were included as control 

variables in the structural model to control for effects of extraneous variables (Chen et al. 2015, 

Ajamieh et al. 2016). Firm size was modeled as a single-indicator composite to account for the 

role of different firm sizes in explaining business process performance through the natural 

logarithm of the number of employees (Benitez et al. 2018a). Due to the skewed distribution, it is 

advisable to also apply the logarithm when the firm size is measured through sales or total assets. 

Industry was incorporated as a composite to control for an overall industry effect on business 

process performance and was shaped by three indicators, i.e., industry groups 1–3. The three 

industry group dummies indicate whether an observation belongs to industry 1, 2, or 3. Each 

industry assigns 0 if the observation does not belong to the industry and 1 if the observation does. 

For example, the variable industry group 1 will have a value of 0 for firms that do not belong to 

industry group 1 and a value of 1 for firms that belong to industry group 1. Although the dataset 

consists of four different industries, industry group 4 was not included to avoid perfect 

multicollinearity. Therefore, group 4 became the reference category. The weights of the industry 

composite can be interpreted as a simple contrast, i.e., the difference in contribution to the total 

industry effect between the industry considered and the reference industry. Figure 3 presents how 

Facebook 

Corporate blog(s) 
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LinkedIn 

Social 
media 
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industry, a nominal control variable, was included in the structural model. IS scholars can use the 

dominant or the most important industry as the reference group. 

Figure 3: Modeling a nominal control variable  

 
Note: Industry group 4 is the reference group. 

3.2. Statistical power analysis 

A power analysis should typically be conducted before data collection. It gives insight into the 

minimum sample size required to obtain sufficient statistical accuracy to detect effects of interest 

existing in the population. The power of a statistical test is the probability of rejecting the false 

null hypothesis correctly, that is, of finding an effect in the sample if it indeed exists in the 

population (Cohen 1992). Power analysis can be conducted in two ways: (1) using heuristic rules 

such as Cohen’s power tables and the inverse square root method (Cohen 1988, Kock and Hadaya 

2018), and (2) conducting a Monte Carlo simulation study (Aguirre-Urreta and Rönkkö 2015). 

The 10-times rule (Chin 2010) or the minimum R2 rule is no longer recommended to estimate the 

minimum sample size (Rigdon 2016, Hair et al. 2017a, Kock and Hadaya 2018). 

To apply Cohen’s power tables for multiple regression analysis, four parameters must be 

considered: effect size (the extent to which the path coefficient/weight exists in the population), 

power (probability of rejecting the false null hypothesis correctly), significance level (probability 

of rejecting the true null hypothesis incorrectly), and the number of independent variables of the 

equation containing the considered path coefficient/weight. Once these values are determined, 
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Cohen’s power tables can be used to approximate the minimum required sample size in order to 

achieve a certain power level. To determine the number of required observations, analysts can 

assume a small effect size (0.020 ≤ f2 < 0.150) for a more conservative approximation or a 

medium to large effect size (0.150 ≤ f2 < 0.350 or f2 ≤ 0.350) for a more optimistic approximation 

of the required sample size. The statistical power is usually set to 0.8, and a significance level of 

0.05 is assumed (Cohen 1992). Often the equation with the highest number of independent 

variables is considered to determine the minimum number of observations to reliably detect an 

effect. In our example, the composite model for business process performance has the highest 

number of independent variables (supplier relations, product and service enhancement, 

production and operations, marketing and sales, and customer relations) in an equation. Cohen’s 

power tables suggest a minimum sample size of 91 observations assuming a medium effect size 

(f2 = 0.150), statistical power of 0.8, and significance level of 0.05 (Cohen 1988). Considering the 

outcomes of the power analyses for our example, a sample size of 300 seems adequate to detect 

the effects of interests. The inverse square root method assumes that the estimates are standard 

normally distributed, and approximates the standard error using . Assuming a 5% significance 

level, the required sample size to obtain a statistically significant effect ( ), if it exists in the 

population, can be approximated by , where  represents the minimum 

magnitude of the coefficient considered. 

In addition to considering heuristic rules, IS scholars can conduct a Monte Carlo simulation to 

examine the sample size required to reliably detect effects that exist in the population. A 

population model with the same structure as the estimated model must be specified and all 

population parameter values need to be determined. In the second step, the model is estimated 

several times and the rejection rates of the null hypothesis significance test for the coefficients 
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under examination are considered, i.e., the statistical power. The appealing property of this 

approach is that it can take into account various aspects of the model and indicators incorporated, 

such as sample size, number of indicators, their distribution, and magnitude of the effect. 

Moreover, sensitivity analyses can be conducted by changing the assumed population model to 

see how these changes affect the statistical power. While guidelines have been proposed for pure 

latent variable models in the context of PLS-PM (Aguirre-Urreta and Rönkkö 2015), 

development of guidelines for models containing emergent variables is still an open issue.  

3.3. Estimation  

Various software packages – such as PLS-Graph (Chin 1998b), SmartPLS (Ringle et al. 2015), 

WarpPLS (Kock 2012), XLSTAT-PLS (Addinsoft 2009), and ADANCO (Henseler 2017b) – can 

be used to estimate the model with PLS-PM. We used ADANCO 2.0.1 Professional for Windows 

(http://www.composite-modeling.com/) (Henseler 2017b) to estimate the empirical example. In 

the following, we used Mode B to estimate composite models and PLSc to estimate reflective 

measurement models. Moreover, we used the factor weighting scheme for inner weighting and 

statistical inferences were based on the bootstrap procedure, relying on 4,999 bootstrap runs.  

Prior to model estimation, analysts should set a dominant indicator in each composite and 

reflective measurement model. As the signs of the weight and factor loading estimates of a block 

of indicators are ambiguous, the dominant indicator is used to dictate the orientation of a 

construct. A dominant indicator that is expected to positively correlate with the construct is 

preferable. Face validity can be used to select the dominant indicator – the indicator that is 

theoretically most relevant and thus expected to positively correlate with the construct. In our 

example, we chose SEXB2, SEMB2, SMC1, and BPP4 as dominant indicators.  
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Before the model assessment, the researcher has to ensure that the estimation is technically 

valid, i.e., that the estimation is admissible and no Heywood case has occurred (Henseler 2017c). 

In doing so, he/she needs to investigate whether the PLS-PM algorithm has properly converged. 

Additionally, in particular in the context of PLSc, he/she needs to ensure that the construct 

correlation and the model-implied indicator correlation matrix are valid, i.e., positive semi-

definite. To assess the definiteness of a matrix, user-written Excel plugins for the calculation of 

Eigenvalues can be used. A symmetric matrix is positive semi-definite if all Eigenvalues are 

larger or equal to 0. Finally, all absolute factor loading estimates and reliability estimates must be 

smaller or equal to 1. For our example, the solution was technically valid.  

3.4. Assessment of reflective measurement and composite models 

3.4.1. Evaluation of overall fit of the saturated model 

Table 4 summarizes the steps to assess reflective measurement and composite models. Joint 

assessment should begin with the evaluation of the overall fit of a model with a saturated 

structural model (Gefen et al. 2011, Henseler 2017a), that is, with confirmatory factor/composite 

analysis. The estimated model is as specified by analysts (Gefen et al. 2011). The saturated model 

corresponds to a model in which all constructs are allowed to be freely correlated, whereas the 

concept’s operationalization is exactly as specified by the analyst. The evaluation of the overall 

model fit of the saturated model is useful to assess the validity of the measurement and the 

composite models, because potential model misfit can be entirely attributed to misspecifications 

in the composite and/or measurement models. Therefore, empirical support can be obtained for 

the constructs, i.e., “Does a latent variable exist?”, or “Do the indicators form an emergent 

variable?” Table 2 contains the values of the discrepancy measures and 95% quantiles of their 

corresponding reference distribution for our example. The value of the SRMR was below the 

recommended threshold value of 0.080 (Hu et al. 1992, Henseler et al. 2014). However, the 
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thresholds for the overall model fit in the context of PLS-PM should be considered cautiously as 

they are preliminary and need to be examined in more detail in future methodological research. 

Moreover, all discrepancy measures were below the 95% quantile of their reference distribution 

(HI95). Empirical evidence was thus obtained for the latent variables (social executive behavior 

and social employee behavior) as well as the emergent variables (social media capability and 

business process performance) incorporated in the model. In case of contradictory results for the 

measure of fit (SRMR) and the test of overall model fit (dULS, and dG), the test for overall model 

fit is preferred, as it is based on statistical inference rather than heuristic rules. Moreover, if none 

of the discrepancies was below the 95% quantile of the corresponding reference distribution 

(HI95), analysts can evaluate whether the discrepancies are at least below the 99% quantile (HI99) 

before finally rejecting the model. In the next step, each measurement and composite model must 

be examined separately. Authors of future studies in IS research are encouraged to report a table 

like Table 2. 

Table 2: Results of the confirmatory factor/composite analysis 

Discrepancy 
Overall saturated model fit evaluation 

Value HI95 Conclusion 

SRMR 0.030 0.049 Supported 

dULS 0.210 0.546 Supported 

dG 0.049 0.221 Supported 

Scholars should assess content validity for both kinds of constructs, i.e., latent variables and 

emergent variables, by carefully considering each type of construct and how the according 

concept has been operationalized in prior research. In the case of emergent variables, however, it 

might be desirable to modify the weighting scheme, number of indicators, and content of the 

indicators as illustrated in the bread and beer example. Finally, construct validity should be 

assessed. Depending on the concept’s operationalization, this can be done in several non-

exclusive ways. 
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3.4.2. Assessment of the reflective measurement model 

For reflective measurement models in which latent variables represent behavioral concepts such 

as social executive behavior and social employee behavior, composite reliability, convergent 

validity, indicator reliability, and discriminant validity should be evaluated. Dijkstra–Henseler’s 

ρA should be considered in assessing composite reliability (the correlation between latent variable 

and construct scores). A value of Dijkstra–Henseler’s ρA larger than 0.707 can be regarded as 

reasonable, as more than 50% of the variance in the construct scores can be explained by the 

latent variable (Nunnally and Bernstein 1994). Table 3 shows that the values of Dijkstra–

Henseler’s ρA for social executive behavior and social employee behavior. Both are 0.938 and 

0.913, and thus above the suggested threshold of 0.707, indicating reliable construct scores. 

Convergent validity is the extent to which the indicators belonging to one latent variable 

actually measure the same construct. The average variance extracted (AVE), typically used to 

assess convergent validity (Fornell and Cha 1994), indicates how much of the indicators’ 

variance can be explained by the latent variable. An AVE larger than 0.5 has been suggested to 

provide empirical evidence for convergent validity, as the corresponding latent variable explains 

more than half of the variance in the belonging indicators, and consequently, all other latent 

variables explain less than a half (Fornell and Larcker 1981). In our example, all AVE values are 

above 0.5 (0.788 and 0.716), indicating convergent validity (see Table 3). 

Indicator reliability can be assessed through the factor loading estimates. As factor loading 

estimates are standardized in PLS-PM, the squared factor loading estimate equals the estimated 

indicator reliability. It is generally advisable for factor loadings to be greater than 0.707, 

indicating that more than 50% of the variance in a single indicator can be explained by the 

corresponding latent variable. In this context, also the significance of the factor loading estimates 

should be investigated. Somewhat lower values are not really problematic as long as the construct 
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validity and reliability criteria are met. Table 3 presents the factor loading estimates from our 

example. They range from 0.769 to 0.912 and are all significant on a 1‰ level, suggesting that 

the measures are reliable. 

Discriminant validity entails that two latent variables that are meant to represent two different 

theoretically concepts are statistically sufficiently different. To obtain empirical evidence for 

discriminant validity, IS scholars should consider the HTMT (Henseler et al. 2015). The HTMT 

should be lower than 0.85 (more strict threshold) or 0.90 (more lenient threshold) or significantly 

smaller than 1 (Voorhees et al. 2016, Franke and Sarstedt forthcoming). In our example, the 

HTMT of social executive behavior to social employee behavior is 0.322, and thus below the 

recommended threshold of 0.85 (and of 0.90). Moreover, the one-sided 95% percentile 

confidence interval of HTMT does not cover 1, that is, it is significantly different from 1. 

Scholars can also follow Franke and Sarstedt’s (forthcoming) suggestion to test whether the 

HTMT is significantly smaller than 0.85 or 0.90.  

3.4.3. Assessment of the composite model 

The composite model requires an evaluation sui generis – an examination of the composite model 

with respect to multicollinearity, weights, composite loadings, and their significances (Chin 

1998a, Cenfetelli and Bassellier 2009, Benitez et al. 2018a, Benitez et al. 2018b, Benitez et al. 

2018d).  

As composite models are typically estimated by Mode B (regression weights) in PLS-PM, 

collinearity among indicators forming an emergent variable should be investigated by means of 

the variance inflation factor (VIF), as high multicollinearity can lead to insignificant estimates 

and unexpected signs of the weights. Traditionally, VIF values above 5 are regarded as 

indications of problematic multicollinearity (Hair et al. 2011, Hair et al. 2017a). Yet, typical 

phenomena of multicollinearity can also occur in case of VIF values far below 5. For weights 
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estimated by Mode A, an assessment of multicollinearity is not necessary as these equal scaled 

covariances, and therefore, ignores multicollinearity (Rigdon 2012). 

While weights show the relative contribution of an indicator to its construct, composite 

loadings represent the correlation between the indicator and the corresponding emergent variable; 

a loading shows the absolute contribution of an indicator to its construct (Cenfetelli and 

Bassellier 2009). As weights show the degree of importance of each indicator (ingredient) to the 

construct, analysts should examine whether all indicator weight estimates are significant. For 

indicators with non-significant weight estimates, one must investigate whether composite loading 

estimates are statistically significant and consider dropping any indicators with non-significant 

weight and loading estimates. However, content validity must be considered as well, because 

dropping an indicator may alter the meaning of the emergent variable. IS scholars can thus decide 

to keep an indicator with non-significant weight and loading to preserve the construct’s content 

validity (Hair et al. 2017a). 

Table 3 shows that the VIF values for the indicators of the composite models range from 1.020 

to 1.134, suggesting that multicollinearity is not a problem in our data. Moreover, all weight and 

composite loading estimates show the expected sign and are significant at a 5% significance level 

except one (estimated weight of the indicator production and operations of the construct business 

process performance). The weight estimate of this indicator is 0.108, and its composite loading 

estimate is 0.203† (close to be significant). Considering content validity, the indicator production 

and operations may include some of the firm’s key business processes. Therefore, we decided to 

keep the indicator in the empirical analysis to preserve content validity and avoid altering the 

meaning of the emergent variable business process performance. In this type of situation, analysts 

can also repeat the analysis, dropping the questionable indicators to explore whether the decision 

to keep or drop these indicators affects the results. We dropped BPP3 and repeated the empirical 
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analysis. The results obtained were qualitatively identical, suggesting that this decision does not 

affect the research findings. One might ask why BPP3 should be included when the results do not 

change. This is theoretically justified, as it is difficult to imagine a company’s business process 

performance without production and operations processes, as these often are the heart of a 

company. Because all reflective measurement and composite models from our example show 

desirable properties, we proceed to evaluate the structural model. 

Table 3: Measurement model evaluation 
Code Construct/indicator ρA AVE VIF Weight Loading 

Social executive behavior (1: Strongly disagree, 5: Strongly agree) 

(reflective measurement model, Mode A consistent (PLSc), SEXB2 

as dominant indicator) 

0.938 0.788  

SEXB1 
Behavior of top business executives towards adoption 

of social media is positive  
   0.278*** 0.905*** 

SEXB2 
Top business executives are positive in adopting social 

media for business activities 
   0.269*** 0.877*** 

SEXB3 
Top business executives support adoption of social 

media for business activities 
   0.263*** 0.856*** 

SEXB4 
Top business executives are willing to support 

adoption of social media in the firm 
   0.280*** 0.912*** 

Social employee behavior (1: Strongly disagree, 5: Strongly 

agree) (reflective measurement model, Mode A consistent, SEMB2 

as dominant indicator) 

0.913 0.716  

SEMB1 
Employee behavior towards adoption of social media 

is positive 
   0.301*** 0.901*** 

SEMB2 
Employees are positive to adopt social media in the 

firm 
   0.274*** 0.820*** 

SEMB3 
Employees support adoption of social media in the 

firm 
   0.257*** 0.769*** 

SEMB4 
Employees are willing to support adoption of social 

media in the firm 
   0.296*** 0.888*** 

Social media capability: My firm has deliberately used and 

leveraged… for business activities (1: Strongly disagree, 5: 

Strongly agree) (composite model, Mode B, SMC1 as dominant 

indicator) 

 

SMC1 Facebook  1.037 0.229*** 0.397*** 

SMC2 Twitter  1.032 0.489*** 0.627*** 

SMC3 Corporate blog(s)  1.059 0.601*** 0.751*** 

SMC4 LinkedIn  1.020 0.333*** 0.455*** 

Business process performance: Relative to your key competitors, 

what is your performance in last three years in the following 

business processes (1: Significantly worse, 5: Significantly better 

than my key competitors) (composite model, Mode B, BPP4 as 

dominant indicator) 
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BPP1 Supplier relations  1.022 0.285** 0.397** 

BPP2 Product and service enhancement  1.134 0.553*** 0.307** 

BPP3 Production and operations  1.105 0.108 0.203† 

BPP4 Marketing and sales  1.064 0.609*** 0.531*** 

BPP5 Customer relations  1.063 0.629*** 0.591*** 

Note: †p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001, one-tailed test. 

Table 4: Steps to assess common factor and composite models 

Steps 
Type of 

construct 
Description 

Assessment 

criterion 

Decision 

criterion 
Interpretation 

Testing the 

adequacy of 

reflective 

measurement and 

composite models  

Latent and 

emergent 

variable  

Evaluate the overall fit 

of the model with a 

saturated structural 

model by investigating 

discrepancy between 

empirical and model-

implied indicator 

variance–covariance 

matrix 

 

SRMR  
SRMR < 0.080 

SRMR < HI95 

A SRMR value smaller 

than 0.080 indicates an 

acceptable model fit 

(Henseler et al. 2014); 

however, these 

thresholds are 

preliminary and need to 

be investigated in more 

detail    

dULS  dULS < HI95 The null hypothesis that 

the population indicator 

variance–covariance 

matrix equals the 

model-implied 

counterpart is not 

rejected. Hence, 

empirical evidence for 

the model is given when 

the value of the 

discrepancy measure is 

below the 95% quantile 

of its corresponding 

reference distribution 

dG  dG < HI95 

Evaluating content 

validity 

Latent and 

emergent 

variable 

How the corresponding 

theoretical concepts 

have been 

operationalized 

(measured or built) in 

prior research 

Flexibility in the case of artifacts represented by an 

emergent variable (bread and beer analogy) 

Evaluating 

reliability of 

construct scores 

Latent 

variable 

Evaluating whether the 

construct scores reliably 

represent the underlying 

construct 

ρA ρA > 0.707 

More than 50% of the 

variance in the construct 

scores can be explained 

by the underlying latent 

variable 

Evaluating 

indicator 

reliability 

Evaluating whether 

indicators are reliable 

Factor 

loading 

estimates 

Factor loading 

estimates > 

0.707 
More than 50% of the 

indicator’s variance is 

explained by the latent 

variable 

Factor 

loading 

significance 

Significant at 

5% 

significance 
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level 

Evaluating 

convergent 

validity 

Latent 

variable 

Evaluating the share of 

variance in the 

indicators that is 

explained by the 

underlying latent 

variable  

AVE AVE > 0.5 

More than 50% of 

indicators’ variance is 

explained by the 

underlying latent 

variable 

Evaluating 

discriminant 

validity 

Latent 

variable 

Evaluating whether two 

latent variables are 

statistically different  

HTMT 

HTMT < 0.85 

(or whether the 

HTMT is 

significantly 

smaller than 1) 

Factors are statistically 

different and thus have 

discriminant validity 

Multicollinearity 

Emergent 

variable 

(estimated 

by Mode 

B) 

Evaluating how the 

standard errors of the 

weight estimates are 

affected by the 

correlations of the  

indicators 

VIF VIF < 5 

If the estimates suffer 

from multicollinearity, 

weights obtained by 

Mode A or 

predetermined weights 

can be used 

Weights 
Emergent 

variable 

Evaluating relative 

contribution of an 

indicator to its construct  

Weights’ 

value and 

significance 

Significant at 

5% 

significance 

level 

Each indicator 

contributes significantly 

to the emergent variable 

Loadings 
Emergent 

variable 

Evaluating absolute 

contribution of an 

indicator to its construct 

Loading 

significance 

Significant at 

5% 

significance 

level 

Each indicator 

contributes to the 

emergent variable in a 

statistically significant 

way 

3.5. Assessment of the structural model  

In evaluating the structural model, the analyst should examine the overall fit of the estimated 

model, the path coefficient estimates, their significance, the effect sizes (f2), and the coefficient of 

determination (R2, Hair et al. 2014, Henseler et al. 2016). Analysts should focus specifically and 

primarily on overall model fit in confirmatory research and primarily on R2, the path coefficient 

estimates, and the effect sizes in explanatory research (Henseler 2018). Table 7 summarizes the 

steps to follow in evaluating the structural model. 

3.5.1. Evaluation of the overall fit of the estimated model 

First, analysts should evaluate the overall fit of the estimated model through the bootstrap-based 

test of overall model fit and the SRMR as a measure of approximate fit to obtain empirical 

evidence for the proposed theory. Analysis in confirmatory research without assessing the overall 
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model would be incomplete as this means ignoring empirical evidence for and also against the 

proposed model and the postulated theory (Hayduk 2014). Without assessing the model fit, a 

researcher would not obtain any signal if he or she had incorrectly omitted an important effect in 

the model. Because the test for overall model fit was introduced only recently in the context of 

PLS-PM, the vast majority of models estimated by PLS-PM in past IS research has not been 

evaluated in this respect. However, because the overall model fit can now be tested in the context 

of PLS-PM, we encourage IS scholars to take this evaluation very seriously in causal research. In 

our example, all values of discrepancy measures were below the 95% quantile of their 

corresponding reference distribution (HI95), indicating that the estimated model was not rejected 

at a 5% significance level (see Table 5). Moreover, the SRMR was below the preliminary 

suggested threshold of 0.080, indicating an acceptable model fit. This result suggests that the 

proposed model is well suited for confirming and explaining the development of social media 

capability and business process performance among firms. While the model fit suggests that there 

is a possibility that the world functions according to the specified model, the model can still be 

misspecified in the sense of over-parameterization, i.e., the model contains superfluous zero-paths 

(Henseler et al. 2014). Neither the bootstrap-based test of model fit nor the SRMR punishes for 

unnecessary paths, i.e., neither of them rewards parsimony. Regardless of whether one conducts 

confirmatory or explanatory research, it remains indispensable to assess all path coefficients and 

their significance. Table 6 presents the construct correlation matrix. 

3.5.2. Evaluation of path coefficients and their significance levels  

The path coefficient estimates are essentially standardized regression coefficients, whose sign and 

absolute size can be assessed. These coefficients are interpreted as the change in the dependent 

construct measured by standard deviations, if an independent construct is increased by one 

standard deviation while keeping all other explanatory constructs constant (ceteris paribus 
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consideration). For example, increasing social media capability by one standard deviation will 

increase business process performance by 0.515 standard deviations if all other variables are kept 

constant. Statistical tests and confidence intervals can be used to draw conclusions about the 

population parameters. For confidence intervals, the percentile bootstrap confidence interval is 

recommended (Aguirre-Urreta and Rönkkö 2018). As shown in Figure 4, the path coefficient 

estimates for the hypothesized relationships included in the example range from 0.396 to 0.515, 

and are all significant at a 5% significance level except the effect of the two control variables, 

firm size and industry. A path coefficient estimate is considered as statistically significant 

different from zero at a 5% significance level when its p-value is below 0.05 or when the 95% 

bootstrap percentile confidence interval constructed around the estimate does not cover the zero.  

3.5.3. Evaluation of effect sizes 

The practical relevance of significant effects should be investigated by considering the effect 

sizes of the relationships between the constructs. The effect size is a measure of the magnitude of 

an effect that is independent of sample size. The f2 values ranging from 0.020 to 0.150, 0.150 to 

0.350, or larger or equal to 0.350, indicating weak, medium, or large effect size respectively 

(Cohen 1988). Just as all actors in a movie cannot play a leading role, it is unusual and unlikely 

that most constructs will have a large effect size in the model. We provide this clarification 

because scholars often expect/self-demand that all/most of their effect magnitude be large – an 

unrealistic expectation. This cautionary note extends to supervisors’ expectations for their Ph.D. 

students (as illustrated by Zhao et al. 2010). In our sample, the f2 values for the hypothesized 

relationships range from 0.252 to 0.362 (medium to large). 

3.5.4. Evaluation of R2  

R2 is used to assess goodness of fit in regression analysis (Wooldridge 2013). In the case of 

models estimated by OLS, the R2 value gives the share of variance explained in a dependent 



  

39 

 

construct. Thus, it provides insights into a model’s in-sample predictive power (Becker et al. 

2013). Moreover, R2 forms the basis for several innovative model selection criteria (Franke and 

Sarstedt forthcoming, Sharma et al. forthcoming). Reporting R² makes PLS-PM research future-

proof in this regard, because the new model selection criteria can still be calculated ex post as 

long as the R² values are given.   

The expected magnitude of R2 depends on the phenomenon investigated. As some phenomena 

are already quite well understood, one would expect a relatively high R². For phenomena that are 

less well understood, a lower R² is acceptable. The R² values should be judged relative to studies 

that investigate the same dependent variable. In our example, the R2 values for social media 

capability and business process performance are 0.443 and 0.267, respectively. The study of 

social media in organizations is in its initial stages (Benitez et al. 2018b). Braojos et al. (2015) 

report an R2 value of 0.541 for social media capability. In our example, social executive behavior 

and social employee behavior explain 44.3% of variance in development of social media 

capability, using two unexplored exogenous variables for social media capability (social 

executive behavior and social employee behavior). Considering explained variance in prior IS 

research and the originality of our two exogenous variables in influencing social media 

capability, an R2 of 0.443 seems to be an excellent value.  

The models of Karimi et al. (2007a, 2007b) explain 49% and 43.9% of the variance in 

business process outcomes. In our example, social media capability, firm size, and industry 

explain 26.7% of the variance in business process performance. Although this R2 value is 

somewhat smaller than those obtained by Karimi et al. (2007a, 2007b), it can be considered as 

satisfactory because our model is the first using social media capability to explain business 

process performance individually. The independent variables explaining business process 

outcomes in Karimi et al.’s (2007a, 2007b) work refer to other IT resources (e.g., IT assets, 
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enterprise resource planning capabilities) different from social media capability. This subsection 

illustrates by our fictive example how analysts can report and compare their R2 values. 

Figure 4: Results of the structural model 

Social

executive

behavior

Social

employee

behavior

Social

media

capability

R²=0.443

Business 

Process

Performance

R²=0.267

Industry Firm size

.422***

.396***

.515***

.030 .022

Note: ***p < 0.001. 
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Table 5: Structural model evaluation 

Relationship  Path coefficient 

Social executive behavior � Social media capability (H1) 

0.422*** 

(8.830) 

[0.327, 0.512] 

Social employee behavior � Social media capability (H2) 

0.396*** 

(8.052) 

[0.300, 0.490] 

Social media capability � Business process performance (H3) 

0.515*** 

(10.232) 

[0.426, 0.609] 

Firm size � Business process performance (control variable) 

0.022 

(0.305) 

[-0.128, 0.160] 

Industry � Business process performance (control variable) 

0.030 

(0.312) 

[-0.161, 0.174] 

Endogenous variable R2 

Social media capability 0.443 

Business process performance 0.267 

Overall fit of the estimated model Value HI95 

SRMR 0.032 0.049 

dULS 0.232 0.558 

dG 0.052 0.222 

Effect size  f2 

Social executive behavior � Social media capability (H1) 0.286 

Social employee behavior � Social media capability (H2) 0.252 

Social media capability � Business process performance (H3) 0.362 

Firm size � Business process performance (control variable) 0.001 

Industry � Business process performance (control variable) 0.001 

Note: t-values (one-tailed test) are presented in parentheses. Percentile bootstrap confidence intervals are 

presented in brackets. 

 

Table 6: Construct correlation matrix 

 1 2 3 4 5 6 

1. Social executive behavior 1.000  

2. Social employee behavior 0.322 1.000  

3. Social media capability 0.550 0.532 1.000  

4. Business process performance 0.216 0.309 0.515 1.000  

5. Firm size -0.025 -0.048 -0.014 0.016 1.000  

6. Industry 0.069 0.073 0.010 0.036 0.038 1.000 
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Table 7: Steps to follow in performing structural model evaluation 

Steps Description Criterion Suggested threshold Interpretation 

Overall fit of 

estimated 

model  

Evaluating overall fit of the 

estimated model by 

evaluating discrepancy 

between the empirical 

indicator variance–covariance 

matrix and its model-implied 

counterpart 

SRMR  
SRMR < 0.080 

SRMR < HI95 

Value of discrepancy 

measure below the 95% 

quantile of the 

corresponding reference 

distribution provides 

empirical evidence for the 

postulated model. In other 

words, it is possible that 

the empirical data stem 

from a world that 

functions as theorized by 

the model  

dULS  dULS < HI95 

dG  dG < HI95 

Consider path 

coefficient 

estimates and 

their 

significance 

levels 

Standardized regression 

coefficients are interpreted  as 

change in standard deviations 

of the dependent variable if 

an independent variable is 

increased by one standard 

deviation while all other 

independent variables in the 

equation remain constant 

Path 

coefficient 

estimates and 

their 

significance 

level 

Significant at 5% 

significance level, i.e., 

p-value < 5% 

 

Effect of independent 

variables on dependent 

variables is statistically 

significant 

Consider 

effect sizes (f2) 

Measure of the magnitude of 

an effect that is independent 

of sample size. Give an 

indication about the practical 

relevance of an effect 

f2 value 

f2 < 0.020: no 

substantial effect 

0.020 ≤ f2 < 0.150: 

weak effect size 

0.150 ≤ f2 < 0.350: 

medium effect size 

f2 ≥ 0.350: large effect 

size 

Degree of strength of an 

effect 

Evaluate R2 
Explained variance of an 

dependent  construct 
R2  

When the phenomena 

are already quite well 

understood, one would 

expect a high R². When 

the phenomena are not 

yet well understood, a 

lower R² is acceptable  

Degree of variance 

explained for 

phenomenon under 

investigation 

4. Discussion and conclusions 

IS research often tackles complex research problems and questions that require conceptualization 

and operationalization of different types of theoretical concepts, i.e., behavioral concepts and 

artifacts, as well as the estimation of their relationships. PLS-PM is a suitable estimator for this 

purpose. How can one perform and report an impactful analysis using PLS-PM in IS research 

following the recent improvements in PLS-PM? This study provides thorough guidelines on PLS-
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PM in the framework of causal (confirmatory and explanatory) research, employing the latest 

standards recommended. In doing so, it addresses the why and how to perform and report a PLS-

PM estimation in confirmatory and explanatory IS research, illustrated by a fictive example on 

business value of social media. This is the key contribution of this paper to the methodological 

literature in IS empirical research. 

In the last five years, methodologists have overcome major weaknesses of traditional PLS-PM, 

such as its inconsistency for latent variable models and lack of a test for overall model fit. To 

benefit from all these enhancements, IS scholars need new guidelines for empirical studies that 

incorporate all these recent new developments and insights, as most of the guidelines papers on 

PLS-PM in the IS research were published before 2013 (e.g., Chin 1998a, Gefen and Straub 

2005, Marcoulides et al. 2009, Ringle et al. 2012). Although several recent scholarly textbooks 

and articles (e.g., Hair et al. 2017a, 2017b, Sarstedt et al. 2017) have provided guidelines for 

causal research that cover some of the latest enhancements to PLS-PM, neither of these PLS-PM 

guidelines for causal research covered the full range of recent developments, nor did they 

introduce any new framework for applying PLS-PM and reporting its outcomes. To address this 

shortcoming in the existing IS literature, this paper provides updated guidelines on the use of 

PLS-PM in assessment of reflective measurement models, composite models, and structural 

models. To the best of our knowledge, the proposed guidelines take into account all recent 

enhancements. An application of the guidelines is illustrated using a parsimonious IS research 

example on business value of social media.  

In contrast to prior guidelines (Marcoulides and Saunders 2006, Ringle et al. 2012), our article 

introduces the artifact – a human-made/firm-made object – as a new kind of theoretical concept 

and shows how this type of theoretical concept can be operationalized by means of the composite 

model. Because a significant proportion of theoretical concepts in IS research are human-
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made/firm-made, one can expect the composite model to become the dominant conceptualization 

in IS research in the coming years. Against this background, we highlight the usefulness of model 

testing in confirmatory and explanatory research using PLS-PM. Without considering its results, 

it is hardly possible to obtain empirical evidence for or against a scholar’s proposed theory. 

Finally, we strongly recommend that scholars employ consistent estimators, using PLSc when the 

theoretical concept is operationalized by a measurement model. 

As our article about the use of PLS-PM for causal research is limited to linear, recursive 

models containing only first-order constructs, future IS research should develop additional 

updated guidelines incorporating recent developments for more complex models, such as models 

containing moderation effects, second-order emergent variables of emergent variables, and for 

composite models that account for more complex relationships between the indicators and the 

emergent variable. Although some steps have been made using PLS-PM to deal with endogeneity 

in the form of omitted variables (e.g., Benitez et al. 2016, Hult et al. 2018), the problem of 

endogeneity requires more attention in the field of IS and in the context of PLS-PM.  

Although this study focuses only on PLS-PM for confirmatory and explanatory purposes, 

PLS-PM can be used for different types of research (Henseler 2018). A further promising 

application of PLS-PM in IS research is predictive modeling, which aims to produce accurate 

forecasts (Shmueli et al. 2016). These assessment criteria differ from those employed in 

confirmatory and explanatory research (Evermann and Tate 2016, Cepeda et al. 2016), and 

models of causal research do not necessarily perform well when it comes to prediction purposes 

and vice versa. 

 As part of the progress in methodology-related research, scholars continuously suggest new 

approaches and new validity criteria. For instance, Cheah et al. (forthcoming) recommend 

conducting redundancy analysis to assess the convergent validity in the context of causal–
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formative measurement and composite models. As soon as there is sufficient evidence (e.g., by 

means of Monte Carlo simulations) for the efficacy of the new suggestion, scholars may consider 

adding this suggestion to their methodological toolbox.  

The adjusted coefficient of determination (adjusted R2) has been proposed by prior 

methodological research (Hair et al. 2014, Henseler et al. 2016, Hair et al. 2017a) as a criterion to 

assess the structural model in explanatory research (Henseler 2018). Using a Monte Carlo study, 

Sharma et al. (forthcoming) find that R2, adjusted R2, goodness-of-fit index, and Q2 are not 

appropriate criteria to compare competing latent variable models based on the same dataset (same 

sample). Their argument is that these criteria improve with greater model complexity, and 

therefore, favor more complex models (e.g., the saturated model). To avoid the shortcoming, they 

propose to employ the Geweke–Meese criterion (GM) and Bayesian information criteria (BIC) to 

compare alternative latent variable models, and find support for their proposal in a simulation 

study. “BIC and GM should be used due to their high model selection accuracy and ease of use” 

(Sharma et al. forthcoming, p. 7). Future methodological research should study the performance 

of adjusted R2 in comparing different estimated models based on different samples as well as 

extending the simulation study of Sharma et al. (forthcoming) to emergent variable models. 

PLS-PM has become a valuable statistical tool for empirical research in IS and many other 

disciplines of business and social sciences research. To meet the ever-growing scholarly demand 

in terms of scientific rigor, methodologists have continuously been improving PLS-PM. This 

paper helps disseminate these improvements, and enables users of PLS-PM to be aware of and 

fulfill the contemporary methodological standards. 
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