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A Green Delivery-Pickup Problem for Home Hemodialysis Machines; 

Sharing Economy in Distributing Scarce Resources 

 

Abstract 

In this paper, we address a green delivery-pickup problem for Home Hemodialysis Machines (HHMs) 

categorized as scarce commodities. The system supplies the HHMs either from the central depot of the 

company or from the individual owners. Based on the sharing economy concept, the individuals who 

own the HHM devices can involve in this home health care system and share them with others through 

the fleet of the company to make money. After delivery of portable HHM devices to the clients 

(patients), they will be collected, disinfected and reallocated to fulfill the demands of the other 

customers. Moreover, respecting the environmental concerns, the vehicles’ fuel consumption and 

consequently the GHG emissions are realistically assumed as a function of the vehicles’ load, such that 

the company and especially the individual owners contribute to reducing GHG emissions, in addition 

to the primary economic motivations. Current research provides a bi-objective mixed-integer linear 

programming model which seeks minimizing total system cost and total carbon emissions. In order to 

solve the problem, Torabi and Hassini’s (TH) technique is applied and then a multi-objective meta-

heuristic algorithm, self-learning non-dominated sorting genetic algorithm (SNSGA-II), is developed 

for medium- and large-sized problems. Finally, the application of the problem is investigated by a real 

case study from the healthcare sector. Numerical analyses indicate that the proposed green sharing-

enabled model has a meaningful impact on both operational-level logistics determinations as well as 

the environmental important attainment indicators. As notable savings are guaranteed in terms of total 

system cost and emission, the proposed model has a great potential to provide the item sharing activities 

with a proper sustainable solution. 

 

Keywords: 

Sharing economy, Delivery and pickup problem, Green transportation, Multi-objective optimization, 

Self-learning NSGA-II 
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1. Introduction 

Nowadays, a large number of people in the world are dialysis patients who suffer from a reduction in 

the kidney's ability to dispose of urea. To benefit from dialysis machines, these patients usually have to 

go to a hospital according to a pre-specified schedule. Home Hemodialysis Machine (HHM) as a 

portable generator of hemodialysis machines is powerful enough for in-center treatment but simplified 

for use in a patient's home. It provides patients with a reliable and robust dialysis experience (less than 

2 hours) where they are most comfortable, at home. 

Research has shown that patients who regularly have used HHM have less blood pressure and can 

survive without kidney transplant (Weinhandl et al. 2012). It implies that medication is effective when 

it consumed at the right time, at the appropriate place and the desired amount and desired intensity. Due 

to the high price of HHM and the ever-increasing number of consumers, sharing economy concept can 

be utilized to provide an inexpensive substitute solution for the patients rather than the HHM ownership. 

The sharing economy is a term for the distributing process of assets or services in a way that differs 

from the traditional model of corporations hiring employees and selling products to customers. In the 

sharing economy, individuals are contributed to rent or "share" items like their house, car and personal 

time to other people who need them (Hamari et al., 2016). The sharing economy is expanding rapidly 

in terms of the number of users, service providers and innovative concepts. In recent years, many 

entrepreneurs and researchers have paid attention on the issue of sharing or leasing scarce assets with 

high economic and reusable value. In 2016, 44.8 million U.S. adults used the sharing economy, and it 

is expected to grow to 86.5 million U.S. users by 2021 (Statista, 2019), and it is expected that by 2025 

the share-economy market will be $335 billion (PricewaterhouseCoopers, 2015). 

Today’s immense and growing potential for competitive pricing, consumers' desire to novel experience, 

socialization, accessibility, and sustainability portend that the sharing economy will inescapably spread 

and considered as part of the global economic order (Kathan et al., 2016). However, sharing policy's 

efficiency depends on the existence of an efficient distribution and sharing system as well as 

transportation as one of the most important sectors of logistics and a significant infrastructure for 
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economic growth. Despite the key role of transport in international competitiveness, its striking effect 

on releasing CO2 emissions cannot be ignored (Mohammadi et al., 2019). 

As reported by ECOFYS (2010), the transportation sector is responsible for the release of about 15% 

of 2010 greenhouse gas emissions and in urban areas, this number increases by more than 80% (United 

Nations Economic and Social Council, 2009). It is therefore important that, in addition to examining 

the economic advantages of transport in sharing economy, to control its negative and destructive effects 

on the environment and reduce its carbon emissions. 

Knowing the above considerations, this paper aims to improve the classic pickup and delivery models, 

to make them more useful for decision-makers to enhance the performance of the sharing operations 

while serving the customers with a timely home health services and provides the individuals a compact 

source of income. To integrate a kind of crowdsourcing into a for-profit corporation, a scarce delivery-

pickup problem (SDPP) is investigated which attempts to find the optimal routes for a fleet of 

capacitated vehicles to deliver identical scarce commodities like HHM to customers and pickup used 

HHMs from customers after requested service time. Accordingly, after the first visit, the “delivery 

customers” who received the HHM will change to “pickup customers” who must get a pickup service. 

One key feature of SDPP is that the HHMs collected from a client can be immediately applied to meet 

the demand of another client with no very time-consuming setup time (including the disinfection 

process), which in turn affects the vehicle load capacity and designated routes. As a result of that, the 

healthcare provider can improve HHM utilization by performing item-sharing and delivery then pickup 

platform instead of using direct deliveries, which leads to less need for an initial investment. 

This study, to the best of our knowledge, is the first attempt in demonstrating how the integration of 

the item-sharing concept into the business model of a private home health care service provider 

increases the company’s profit and provides a compact source of income for the individual 

owners, and also makes remarkably the positive impacts on the environment. Our bi-objective 

mathematical model with the above-mentioned characteristics is distinguished from the classic pickup-

delivery Problem by allowing the system to supply the HHMs either from the central depot of the 

company or from the individual owners. The developed optimization model incorporates two objective 
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functions: (i) minimizing the company’s total loss through minimization of transportation-related costs, 

including fuel consumption cost based on travel distance, plus the penalty cost on waiting and/or delay 

time, and payment of the rent to the individual owners of HHMs, from which the total rental income is 

subtracted and (ii) minimizing the total carbon emissions generated by the vehicles.  

In this model, the volume of CO2 emissions produced by the system is based on the load and the 

distances in which the loads are carried by the vehicles. Then, a linear form of the mathematical model 

is formulated and solved by an exact approach; the fuzzy aggregated method proposed by Torabi and 

Hassini (2008). Subsequently, the performance of the model for medium- and large-sized problems is 

evaluated with a meta-heuristic based on a well-known evaluative strategy, self-learning NSGA-II (non-

dominated sorting genetic algorithm-II). The self-learning consists of modifying the amount of crossing 

and mutation probabilities according to the changes in the fitness function value that occurred after 

operations in the next iteration of the algorithm. Eventually, to compare the foregoing approaches, a 

comprehensive sensitivity analysis is performed. 

In addition to the benefits of proposed SDPP in the home health sector, this model can be also realized 

in item-sharing, meaning that the customers who already owned a HHM, can involve in this home health 

service to contribute in the company’s income, by temporarily renting their HHM.  This idea is 

particularly beneficial for items which are demanded on rare (like tools, ie lathe, air compressor, 

lawnmowers, etc.) or just temporal occasions (like items for recreational activities, ie party and event 

supplies or camping accessories), or even treatment equipment. This allows low rental fees for desired 

items, concurrently with the chance of more sustainable consumption (Lamberton and Rose, 2012). In 

a real case from the health sector which motivated this research, a limited number of portal HHMs is 

used as depicts in Fig. 1 to serve the patients. 

The remainder of the study is arranged as follows. Section 2 provides a brief review of the relevant 

academic studies in this area. The problem description and developed mathematical formulation are 

presented in Sections 3 and 4, respectively. Section 5 provides the solution methods for the investigated 

SDPP. In Sections 6, a real case from the health sector is studied and the efficiency of the proposed 
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model and solving methods are examined, accordingly. Eventually, Section 7 concludes the main 

findings of the research and provides directions for further research. 

 

 

Fig. 1. Company offer the comfort of hemodialysis at home by portal dialysis machines (The 

National, 2018). 

2. Literature review 

The sharing economy has grown over the past few years where it now serves as an all-encompassing 

term which indicates to activities of acquiring, presenting or sharing access to goods and services (see 

Reim et al., 2015; Tukker, 2015). The benefit of delivery-pickup service in a sharing system is that 

many people can sequentially utilize the same thing instead of individually purchasing one such thing 

(Bardhi and Eckhardt, 2012). The literature on sharing economy is an emerging field of research in 

diverse systems which involves but is not restricted to well-known parts such as bike-, car-, and ride-

sharing (see Furuhata et al., 2013; Lei and Ouyang, 2018; Ricci, 2015; Ho and Szeto, 2017; Shaheen 

and Cohen, 2013, Yu et al., 2019b).  

Previous studies on item-sharing have coordinated the assignment of supplied items to demands. 

Carrying a good from its current place to the place where it is requested remains in the user obligation 

(see Bardhi and Eckhardt, 2012). Although the duty of moving can be outsourced to transport companies 
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like DHL or Airbnb, the prices charged in this way and the long sending time can be a threat to accept 

item-sharing by customers. They may decide to take responsibility for carrying that needs time and 

effort and consequently leads to decreasing of user acceptance. Such an item-sharing system asks for 

practical mechanisms to coordinate the provided items with the requests, but the aforementioned 

concept and their operational decision are not lectured by research so far.  

Pickup and delivery problems (PDPs) generalize the vehicle routing problem (VRP). The PDP 

investigates planning routes for multiple requests, and for each request, a commodity is transported 

from a pickup point to a delivery point (for an overview on routing problems with pickup and delivery 

see Ho and Szeto, 2016). In this study, the PDPs are referred for an overview of sharing problems with 

pickup and delivery structure which have been surveyed by researches for a long time (see Battarra et 

al., 2014; Mirzapour Al-e-Hashem and Rekik, 2014; Berbeglia et al., 2007). To the best of our 

knowledge, a sharing-enabled PDP for HHMs has not been addressed in the literature so far. 

The PDPs can be categorized based on the transportation patterns of items, the features of the depots 

and customers, and constraints on items carried by vehicles. In the routing problem, a depot is a place 

where goods are kept until they are sent somewhere to be used, a building that vehicles leave from. The 

proposed model introduces a new entity is called an individual, which is neither a customer nor a depot. 

Individuals can act as a depot and the truck can load there. While the trucks do not pay for the use of 

the depot, they are charged by the individuals for renting HHMs. On the other hand, they are similar to 

customers, because when the item is rented from an individual, it must be returned to him, although 

trucks are not required to visit them. Besides, ignoring them has not a direct cost for the company such 

as lost sales. 

Based on a comprehensive survey of the PDP presented by Parragh et al. (2008, Parts I and II), PDP 

outlines can be split into transmission among the depot and clients as well as conveyance between 

clients. The first structure includes goods picked from and delivered to the customers in which a vehicle 

leaves the depot, picks up items from and concurrently delivers items to clients and eventually returns 

to the depot (Zhu and Sheu, 2018; Shi et al., 2018; Karimi, 2018). The second type is applied in carrying 

to satisfy a set of delivery points with goods gathered from different pickup points (Ho and Szeto, 2016; 

Archetti et al., 2018; Wang et al., 2018a; Anily and Bramel, 1999). The literature can also be categorized 
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according to the size of the employed fleet. Multi-vehicle transportation problems are straight branches 

of single-vehicle versions and more realistic (Sun, et al., 2019; Rey et al., 2019; Heng, et al., 2015).  

Another pickup and delivery routing problem are investigated by Sun et al. (2018), where the authors 

provide an optimization-based structure for variants of the PDP with time windows that can specify 

time-dependent travel as well as recognize vehicle start times. In our proposed model, the vehicle 

leaving time is formulated with continuous-time variables which makes modeling straightforward and 

many of associated researches are completely related to the real applications (e.g. Ropke and Cordeau, 

2009; Naccache et al., 2018; Sun et al., 2018 and Z. Al Chami et al., 2017). In other underlying models 

like Iassinovskaia et al. (2017) and Ghilas et al. (2016), the time is discretized in periods in which a 

sailing leg or a stop in port (demand point) may consist of several time intervals. 

According to the schemes laid out by Berbeglia et al. (2007), Ho and Szeto (2016) presented an 

overview to 2015 and compares different variants of the PDPs. In Table 1, we summarize recent articles 

related to operational PDPs published since 2016. The first column shows the references. Then, the 

feature of models, the solution methods and the main variants of the problems are provided. The 

headings of the column represent considering sharing economy (SE), greenness (G), multi-objective 

(MO) and objective function (Obj). P/D, P-D, D-P, and PD stand respectively for pickup or delivery, 

pickup then delivery, delivery then pickup, and simultaneous pickup and delivery. Homogeneous and 

heterogeneous fleets are indicated by Ho and Ht. Ct, Dc, Sf, and Hd correspond respectively to 

investigating continuous period, discrete period, soft time window, and hard time window. Dn, Cap, 1, 

and >1 also use for dynamic control of capacity, studying capacitated vehicles, a single vehicle, and 

more than one vehicle in the fleet, respectively. In the variants column, we will refer to the classification 

based on a coding system by where problems are highlighted. 

Although a review of the literature implies PDPs are more diverse, most of them are limited to 

simultaneous pickup and delivery problems or delivery of the commodities from a node to another node. 

Regarding Table 1, delivering the scarce items to customers and then picking up the used-items from 

the consumers (indicated by D-P in the column of characteristics) and involving the individual owners 

with the aim of improving the profitability, service level and environmental factors gained by sharing 

platforms, collectively is not addressed by researches so far. Furthermore, the green concern associated 
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with logistics activities with less harm to the environment has been rarely discussed and the lack of such 

approaches can be inferred from Table 1. Thus, the necessity of green delivery-pickup service with 

item-sharing is quite evident. 

As Table 1 shows, in a very few PDP studies, different objectives have been considered despite its 

importance in realistic applications. Among them, Wang et al. (2018b) considered the operational cost 

and the number of vehicles utilized as the first and second objective functions, respectively. Although 

Wang et al. (2018a) and Soysal et al. (2018) have estimated CO2 emissions of the vehicles as a function 

of load and speed, they considered a homogenous fleet, converse to the heterogeneous fleet in the 

proposed SDPP where the different carrier types with unequal capacity, fuel consumption rates, and 

environmental index are accessible and consequently an appropriate fleet assignment would be 

embedded in the model (for an overview on green routing problems see Bektaş and Laporte, 2011, 

Bektaş et al., 2016, Demir et al., 2014a, Demir et al., 2014b, Lin et al., 2014, and Yu et al., 2019a).  

This paper aims to bridge over the aforementioned gaps by developing a multi-objective mathematical 

model to formulate a green sharing-enabled SDPP and improve the profitability, accessibility and even 

eco-friendliness achieved by item-sharing platforms. 
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Table 1  
Characteristics of earlier studies on PDPs. 

Study authors (Year) SE G MO Obj Characteristics Modeling  Solution procedure Variants 
Ghilas et al. (2016)    1 P-D, Ht, Dc, Hd, Cap, >1 MIP Heuristic Scenario-based 
Ho and Szeto (2016)    1 P/D, Cap, 1 MILP Heuristic  
Abbasi-Pooya and H. Kashan (2017)    5 PD, Ct, Cap, 1 2 MIP Heuristic  
Al Chami et al. (2017)   ✓ 1, 4 P-D, Ht, Ct, Hd, Cap, >1 MILP Meta-heuristic  
Azadian et al. (2017)    1 P-D, Ho, Ct, Hd, >1 MILP Heuristic  
Furtado et al. (2017)    1 P-D, Ho, Ct, Hd, Cap, >1 MIP Exact method  
Iassinovskaia et al. (2017)    1, 2, 3 PD, Dc, Sf, Cap, 1 MILP Exact method Inventory-routing problem 
Ho and Szeto (2017)    2, 5 P-D, Ho, Ct, Cap, >1 MILP Meta-heuristic  
Qiu et al. (2017)    1, 4 P-D, Ho, Ct, Hd, Cap, >1 MIP Heuristic  
Ting et al. (2017)     1 P-D, Ho, Cap, >1 MIP Meta-heuristic Multi-vehicle selective 
Veenstra et al. (2017a)    1 P-D, Ho, Ct, Hd, Cap, >1 MILP Exact method  
Veenstra et al. (2017b)    1 P-D, 1 MILP Meta-heuristic Traveling salesman problem 
Xu et al. (2017)    1 PD, Ho, Ct, Cap, >1 MILP Meta-heuristic Multi-visit unpaired 
Ahkamiraad and Wang (2018)    1 P-D, Ho, Ct, Hd, Cap, >1 MILP Meta-heuristic Vehicle routing problem 
Archetti et al. (2018)    1, 2 P-D, Ho, Dc, Cap, 1 MILP Exact method Inventory-routing problem 
Györgyi and Kis (2018)    1, 3 P-D, Ho, Ct, Hd, >1 SMIP Exact method  
Karimi (2018)    1 PD, Ho, Ct, Cap, >1 MIP Meta-heuristic Hub location-routing problem 
Lei and Ouyang (2018)    1, 4 P-D, Ht, Ct, Cap, >1 MINLP Heuristic  
Lv et al. (2018)    1 PD, Ho, Cap, >1 MIP Heuristic Collaborative 
Madankumar and Rajendran (2018)  ✓  1 P-D, Ho, Ct, Hd, Cap, >1 MILP Exact method Vehicle routing problem 
Malaguti et al. (2018)    1 P-D, Cap, 1 ILP Heuristic Traveling salesman problem 
Naccache et al. (2018)    1 P-D, Ho, Ct, Hd, >1 ILP Heuristic  
Shi et al. (2018)    1, 3 PD, Ho, Ct, Sf, Cap, >1 SMIP Meta-heuristic  
Soleimani et al. (2018)   ✓ ✓ 1, 6  PD, Ht, Cap, >1 MINLP Heuristic Vehicle routing problem 
Soysal et al. (2018)  ✓  1, 3 P-D, Ht, Ct, Sf Cap, >1 MINLP Exact method  
Sun et al. (2018)    1, 4 P-D, Ho, Ct, Hd, Cap, >1 ILP Exact method Time-dependent 
Wang et al. (2018a)  ✓  1, 6 P-D, Ho, Cap, 1 ILP Exact method Collaborative 
Wang et al. (2018b)   ✓ 1, 4 P-D, Ht, Cap, >1 ILP Heuristic  
Yu et al. (2017)     1 P-D, Ho, Ct, Hd, Cap, >1 MIP Exact method Collaborative 
Zhu and Sheu (2018)    1 PD, Ho, Cap, >1 SMIP Heuristic  
Benavent et al. (2019)    1 P-D, Ho, 1 SMIP Heuristic Traveling salesman problem 
Goeke (2019)    1 P-D, Ho, Ct, Hd, Cap, 1 MIP Meta-heuristic  
Rey et al. (2019)    1 P-D, Ho, Cap, >1 MIP Heuristic  
Sun, et al. (2019)  ✓  6 P-D, Ht, Ct, Hd, Cap, >1 MILP Exact method  
Zhang et al. (2019)    1 PD, Ho, Cap, >1 MIP Heuristic  
This study ✓ ✓ ✓ 1, 3, 4, 6 D-P, Ht, Ct, Sf, Hd, Cap, Dn, >1 MINLP Meta-heuristic  
1: Total distance/refueling cost, 2: Inventory cost, 3: Penalty for violated time windows, 4: Profit/Revenue, 5: Total makespan (duration), 6: Emission/fuel consumption, ILP: Integer linear 
programming, MIP: Mixed integer programming, MILP: Mixed integer linear programming, MINLP: Mixed integer non-linear programming, SMIP: Stochastic mixed integer programming 
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3. Problem definition 

The proposed SDPP is a comprehensive model in which a company is willing to serve its customers 

(kidney patients) with a limited set of portable hemodialysis machines through its capacitated 

heterogeneous fleet of vehicles. To address the distribution activities, commodities (HHMs) are 

supplied either from the central depot or individual owners of HHMs who make them available for the 

company to rent for a short period. The patients’ requests usually in terms of time windows and the 

individuals' HHMs pickup time window and maximum rental time are both received by the company 

in advance.  The company is, therefore, attempting to pickup the HHMs from the depot or from the 

available individual’s locations to carry them to the patients based on the given time windows. There 

are two main differences between the depot and individuals; depot is compulsory the starting point of 

the fleet tour, while the individuals are not necessarily the starting point. Picking up the HHM from the 

individuals imposes an extra renting cost to the system based on the rental period, which is not the case 

for the depot. We will discuss how this concept affects the economic and ecologic aspects of the 

proposed pickup-delivery system. 

 The patients need the HHMs only for a few hours (≤ 2hrs). The used HHMs picked up by the vehicles 

can be prepared for the next use after the necessary disinfection and safety checks (it takes a few 

minutes). Therefore, the distribution is a mixed sequence of pickup-delivery activities. A small example 

with Fig. 2 is helpful to illustrate the main features considered in this problem. In this figure, the trip of 

different vehicles is shown with red, blue and green arrows from the depot to applicants and/or owners 

nodes. As shown in this figure, the vehicles can pass through the links backward and forward. After the 

delivery of HHMs to the customer, any other vehicle can be contacted to the customer for taking HHMs 

back. The nodes are, therefore, allowed to be visited more than once by different vehicles. The HHMs 

collected from costumers are then prepared to be reallocated to fulfill the demands of other customers.  

In this paper, we suggest a bi-objective programming model for home health service that aims to 

determine the best configuration of the routes and vehicle types, and the ideal sequence of deliveries 

and pickups in order to satisfy the patients’ needs, and provide a compact source of income for the 

individual owners of HHMs such that the two following conflicting objective are being met, 
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simultaneously; minimizing the total costs of the item sharing system and minimizing the carbon 

emissions generated by the vehicles. 

 

D

D

P

1 2 3 4 5 6 7 8 9 10

Time

D Delivery Applier patient OwnerP Pickup

Fig. 2. General schema of a SDPP through a set of customers. 

To present the mathematical model, it is essential to examine different assumptions, parameters, and 

decision variables. To facilitate formulation, the perspectives of assumptions are classified into four 

sections: 1) assumptions relating to transportation especially the vehicles, 2) assumptions concerning 

the customers, 3) assumptions relating to the goods, and 4) the assumptions relating to the carbon 

emission of vehicles. In the following, the assumptions, sets, parameters, and decision variables are 

given: 

 

3.1. Assumptions 

 

a) Transportation  
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- A fleet of different vehicles types is assigned to deliver and pickup HHMs throughout the 

network. 

- The vehicles are heterogeneous and have different CO2 emission indices, and different 

engine standards e.g. Euro 4, 5, etc. 

- Each vehicle has a limited capacity. 

- All the vehicles have the same working time. 

- All vehicle starts from and ends at a single depot. 

 

b) Customers 

- The number of clients is fixed. 

- Setup/Pickup time at each customer is constant. 

- The demands of all customers are met. 

- For each commodity, the total supply is limited and can be less than the total demand. In 

addition to the available HHMs which the company is owning, they also count on the 

HHMs are shared by the individuals.  It is especially important when a vehicle encounters 

with a lack of HHM. In this case, the customer’s demand can be satisfied through sharing 

and inter-client transferring. 

- The split delivery to a customer is not allowed. 

- All customers have a soft time window for taking the commodity. 

 

c) Commodity 

- The HHMs are similar and have an identical service time. 

- At the end of a lease, the delivered HHMs must be taken back by one of the fleet vehicles 

at most at the end of working hours. 

- When the taken HHMs are prepared in the vehicle, they are returned to the system and can 

be used to satisfy the demand of another customer. 

 

d) Carbon emissions 
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- Amount of emitted CO2 by each vehicle for one unit of goods per kilometer is known and 

can be different from vehicle to vehicle. 

 

3.2. Sets 

J : Set of all nodes (�, � ∈ �0, 1, … , 	
 = �0 ∪  ∪ �
), which 0 designates the depot (arrival and 

departure node for the vehicles). In addition, K and L denotes the set of applicants (kidney patients) 

(� ∈ ) and the set of individual HHM owners (� ∈ �), respectively. 

V : Set of all vehicles (� ∈ �1, 2, … , �
) 

 

3.3. Parameters  

start : Starting time of service 

end : Ending time of service 

��� : Setup time for delivering and checking the commodity in advance at node j 

��� : Pickup time for taking the commodity, disinfection and safety checks at node j  

��� : Symmetrical distance between point i and j 

��� : Rental time of the commodity by customer k 

�� : Rental price of the commodity 

��� : Maximum returning time determined by the individual owner l 

re : Rental cost paid to the individual owners 

�� : Capacity of vehicle v 

 !� : Total inventory of HHMs at the depot 

 ���: The variable cost of vehicle v per distance unit traveled from node i to node j 

fv : Fuel consumption rate of vehicle v per 100 kilometers. 

tij : Travel time from node i to node j 

"#�$%& , ��$%&' Pickup time window of individual point l 

"#�(, ��(' : Earliest and latest arrival time at applier node k 
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)� : Penalty coefficient for unit-time violations of the specified time window for applier 

node k 

* : A sufficient large number 

  

3.4. Decision variables 

 

+���,, : 1, if  i immediately precedes j by vehicle v to deliver the commodity when we have a 

delivery in the previous node (i); 0, otherwise. 

+���-, : 1, if  i immediately precedes j by vehicle v to deliver the commodity when we have a 

pickup in the previous node (i); 0, otherwise. 

+���,  : 1, if  i immediately precedes j by vehicle v to deliver the commodity; 0, otherwise 

(+���, = +���,, + +���-,).  

+���,- : 1, if  i immediately precedes j by vehicle v for taking the commodity when we have a 

delivery in the previous node (i); 0, otherwise. 

+���-- : 1, if  i immediately precedes j by vehicle v for taking the commodity when we have a 

pickup in the previous node (i); 0, otherwise. 

+���-  : 1, if  i immediately precedes j by vehicle v for taking the commodity; 0, otherwise 

(+���- = +���,- + +���--).  

/��,  : Load of vehicle v when it arrives at the customer j for delivering the commodity 

/��-  : Load of vehicle v when it arrives at the customer j for taking the commodity 

0� : Initial inventory allocated to the vehicle v  

1�,: Arrival time at node j for delivering the commodity 

1�-: Arrival time at node j for taking the commodity 

∆3� : Time window violation due to early service at applicant node k 

45� : Time window violation due to late service at applicant node k 
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Considering a vehicle of transport mode, the emitted carbon emission depends on its fuel consumption 

and its fuel emission factor (Hoen et al., 2014). In view of the environmental concerns, the 

corresponding generated carbon emission by vehicle v per kilometer is calculated as follows: 

6� = 7� . 9� . :. ;  (1) 

 

Where : denotes increasing rate in fuel consumption for the load carried by the vehicle, ; is defined 

as the actual weight of the commodity and 9� denotes fuel emission of vehicle v, which is described as 

amount of CO2 emitted per liter of fuel. 

 

4. Mathematical formulation 

Base on the aforementioned explanations and indices, we develop a bi-objective mixed integer 

nonlinear mathematical model as follows:   

 

Min @ ����,�∈A�∈B
.  ��� . C+���, + +���- D + @ )� . E∆3� + 45�F�∈G + �#. @ +���-

�∈A�∈H�∈B
− ��. @ ��� . +���,

�∈A�∈G�∈B
 

(2) 

Min @ ����,�∈A�∈B
. 6� . C+���, . /��, + +���- . /��- D 

(3) 

 

The first objective function of the offered model is given in the equation (2), itself has three components; 

transportation-related cost (including but not limited to fuel cost, driver salary, toll costs, maintenance 

costs, traffic fines) that is considered as a linear function of travel distance, penalty on waiting and delay 

time, and the rental cost paid to the individual owners, from which the company’s total revenue is 

subtracted. The second objective function of the offered model is given in the equation (3) which relates 

to the carbon emissions generated by the load-dependent combustion of fuels in vehicles. It should be 

noted that in the second objective function the / and +, both are the decision variables and the two 

bilinear terms +���, . /��,  and +���- . /��-  consider loads carried by the vehicles. Based on the definition of 
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fuel consumption given by Bektas and Laporte (2011), the fuel emission factor (6�) is determined as 

kilogram of CO2 released per liter of fuel.  

Subject to 

Routing and flow constraints 

J@ @ +���,
�∈B�∈A , @ @ +���-

�∈B�∈A K = 1 ∀� ∈  (4) 

@ @C+���- − +���, D�∈B�∈A = 0 ∀� ∈ � (5) 

M@C+N��, + +N��- D�∈A , @C+�N�, + +�N�- D�∈A O = 1 ∀� ∈ � (6) 

@ +���,
�∈A = @C+���,, + +���,-D�∈A  ∀� ∈ 	, ∀� ∈ � (7) 

@ +���-
�∈A = @C+���-, + +���--D�∈A  ∀� ∈ 	, ∀� ∈ � (8) 

@ @ +���, + +���-
�∈B�∈A = @ @ +���, + +���-

�∈B�∈A  ∀� ∈ 	 (9) 

 
Equation (4) ensures that the demand of all customers (kidney patients) is satisfied. Equation (5) 

indicates that if the commodities are rented from an individual, it must be returned to him.  Equation 

(6) states that all vehicles must begin their journey from the depot and eventually they must return to 

the depot. Equations (7-9) specify the constraints of flow conservation. 

 

Inventory constraints /��, = 0� . +N��, + @ P+���-, . C/��- + 1D + +���,, . C/��, − 1DQ�∈A  ∀� ∈ 	, ∀� ∈ � (10) 

/��- = 0� . +N��- + @ P+���-- . C/��- + 1D + +���,- . C/��, − 1DQ�∈A  ∀� ∈ 	, ∀� ∈ � (11) 

@ 0��∈B ≤  !�  (12) 

0� ≤ �� ∀� ∈ � (13) 

@ +���,
�∈A ≤ /��,  ∀� ∈ 	, ∀� ∈ � (14) 
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@ +���-
�∈A ≤ �� − /��-  ∀� ∈ 	, ∀� ∈ � (15) 

 

Equation (10) shows the vehicle's inventory for delivering HHMs when it reaches a client or owner 

node. The vehicle's inventory when arriving at the first customer after the depot is equal to the initial 

stock allocated to the vehicle. In future visits, if delivery is done in the previous node, the vehicle's 

inventory is reduced. Conversely, the vehicle's inventory is added, if a pickup action is done in the 

previous node. Equation (11) is similar to the equation (10), except that this shows the vehicle's 

inventory for picking up HHMs when it reaches a client or owner node. Equation (12) shows the initial 

allocation of HHMs to various vehicles that cannot be more than the depot's primal inventory. Equation 

(13) ensures that none of the vehicles can have an initial inventory greater than its capacity. Equation 

(14) states that a vehicle is assigned to a node for the delivery of goods when its inventory is sufficient 

to meet the customer’s demand. Equation (15) is similar to the previous equation, a vehicle is assigned 

to a node for the pickup of goods when the vehicle’s vacancy capacity is enough for accepting the used 

HHMs in the node. 

 

Scheduling constraints ��!�� + �N� ≤ S1�,, 1�-T ∀� ∈ 	 (16) 

S1�,, 1�-T ≤ #U� − ��N ∀� ∈ 	 (17) 

1�, + ��� ≤ 1�- ∀� ∈  (18) 

1�, − 1�- ≤ ��� ∀� ∈ � (19) 

C1�, + ��� + ���D ≤ 1�, + * V1 − @ +���,,
�∈B W ∀�, � ∈ 	 (20) 

C1�- + ��� + ���D ≤ 1�, + * V1 − @ +���-,
�∈B W ∀�, � ∈ 	 (21) 

C1�, + ��� + ���D ≤ 1�- + * V1 − @ +���,-
�∈B W ∀�, � ∈ 	 (22) 

C1�- + ��� + ���D ≤ 1�- + * V1 − @ +���--
�∈B W ∀�, � ∈ 	 (23) 

∆3� = *!XS#�( − 1�, , 0T ∀� ∈  (24) 

45� = *!XS0 , 1�, − ��(T ∀� ∈  (25) 
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#�$%& − * V1 − @ +���-
�∈B W ≤ 1�- ≤ ��$%& + * V1 − @ +���-

�∈B W ∀� ∈ 	, ∀� ∈ � (26) 

 

Equation (16) ensures that the delivery/pickup time to/from the first customer cannot be less than the 

start of the vehicle's working hours with the travel time between the depot and the node. Equation (17) 

ensures that the delivery/pickup time to/from the last customer delivery the travel time between that 

node and the depot cannot exceed from vehicle's working hours. Equation (18) states that pickup from 

an applicant should be done after delivery time plus rental time. Constraint (19) ensures that the 

commodity rented from an individual must be returned before the time specified by the owner. 

Equations (20-23) guarantee that when the node j is visited after node i, the start time of the service to 

node j cannot be less than the start time of the service to node i, plus the service time at the node i, and 

the travel time between the two nodes. Equation (24) expresses the relation between the arrival time, its 

earliest time of the service and the earliness variable and constraint (25) specifies the service tardiness. 

Equation (26) ensures that the individual points are visited within their pickup time windows. 

 

Decision variable domains /��, , /��- , 1�, , 1�- , 0� , ∆3� , 45� ∈ YZ ∀� ∈ 	, ∀� ∈ � (27) 

+���,, , +���,- , +���-, , +���-- , +���, , +���- ∈ �0,1
 ∀�, � ∈ 	, ∀� ∈ � (28) 

 

Ultimately, the set (27) makes the non-negativity constraints on the corresponding decision variables 

and the set (28) makes the integrality constraints on the binary variables. 

 

4.1. Linearization of the model 

Since a linear form is solved much faster than a nonlinear one and significantly improves its efficiency, 

it is expedient to convert the proposed mathematical model into the linear form. As the model is 

currently nonlinear due to the multiplication of variables in the second objective and two nonlinear 

constraints (10) and (11), we use a linearization method presented by Mirzaei and Seifi (2015). In 

objective function (3), we have the two bilinear terms +���, . /��,  and +���- . /��-  which can be linearized 

by the help of the following new variables:  

+���, . /��, → \���,  ∀�, � ∈ 	, ∀� ∈ � (29) 
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+���- . /��- → \���-  ∀�, � ∈ 	, ∀� ∈ � (30) 

 

Using (29) and (30), the objective function (3) would be simply rewritten as follows: 

@ ����,�∈�N∪A
 . @ 6� . C\���, + \���- D�∈B  (31) 

 

The following constraints should also be added to the model: 

\���, ≤ S/��, , *. +���, T ∀�, � ∈ 	, ∀� ∈ � (32) 

\���, ≥ S0, /��, + *. C+���, − 1DT ∀�, � ∈ 	, ∀� ∈ � (33) 

\���- ≤ S/��- , *. +���- T ∀�, � ∈ 	, ∀� ∈ � (34) 

\���- ≥ S0, /��- + *. C+���- − 1D T ∀�, � ∈ 	, ∀� ∈ � (35) 

 

Like above, to linearize constraints (10) and (11), new binary variables ^���,,, ^���-,, ^���,- and ^���-- are 

defined as the multiplication of +���,, . /��, , +���-, . /��- , +���,- . /��,  and +���-- . /��-  respectively. Also, the 

bilinear terms 0� . +N��,  and 0� . +N��-  are replaced with two new variables _��, and _��-, respectively. 

Constraints (10) and (11) are also replaced by the following constraints: 

/��, = _��, + @C^���-, + ^���,, + +���-, − +���,,D�∈A  ∀� ∈ 	, ∀� ∈ � (36) 

/��- = _��- + @C^���-- + ^���,- + +���-- − +���,-D�∈A  ∀� ∈ 	, ∀� ∈ � (37) 

 

And in the end, the following constraints are also added to the problem 

^���,, ≤ S/��, , *. +���,,T ∀�, � ∈ 	, ∀� ∈ � (38) 

^���,, ≥ S0, /��, + *. C+���,, − 1D T ∀�, � ∈ 	, ∀� ∈ � (39) 

^���-, ≤ S/��- , *. +���-,T ∀�, � ∈ 	, ∀� ∈ � (40) 

^���-, ≥ S0, /��- + *. C+���-, − 1DT ∀�, � ∈ 	, ∀� ∈ � (41) 
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^���,- ≤ S/��, , *. +���,-T ∀�, � ∈ 	, ∀� ∈ � (42) 

^���,- ≥ S0, /��, + *. C+���,- − 1D T ∀�, � ∈ 	, ∀� ∈ � (43) 

^���-- ≤ S/��- , *. +���--T ∀�, � ∈ 	, ∀� ∈ � (44) 

^���-- ≥ S0, /��- + *. C+���-- − 1DT ∀�, � ∈ 	, ∀� ∈ � (45) 

_��, ≤ S0� , *. +N��, T ∀� ∈ 	, ∀� ∈ � (46) 

_��, ≥ S0, 0� + *. C+N��, − 1DT ∀� ∈ 	, ∀� ∈ � (47) 

_��- ≤ S0�, *. +N��- T ∀� ∈ 	, ∀� ∈ � (48) 

_��- ≥ S0, 0� + *. C+N��- − 1D T ∀� ∈ 	, ∀� ∈ � (49) 

 

5. Solution procedure 

There are numerous ways to solve a multi-objective mathematical model. To achieve the compromise 

solution for the proposed multi-objective optimization problem in small-scaled instances, we use the 

recently introduced the Torabi and Hassini’s (TH) technique. Nonetheless, this method cannot solve 

the large-scale problems within a reasonable time, forcing us to apply a self-learning version 

of the NSGA-II. 

 

5.1. Torabi and Hassini’s (TH)  

TH method provides non-dominated solutions and converts the original multi-objective mathematical 

model to an equivalent single objective one. The related optimization problem, including the aggregated 

objective function, is compiled as follows: 

 

max cEXF = dcN + E1 − dF @ efgfEXFf  (50) 

s.t.  

cN ≤ gfEXF ℎ ∈ �1, 2
 (51) 

X ∈ iEXF  (52) 
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cN !U� d ∈ j0, 1k  (53) 

 

Where iEXF denotes the feasible area related to the constraints of the main model. Besides, d and ef 

represent the coefficient of reimbursement and the weight of the hth objective function, respectively. It 

is important to note that gfEXF indicates the satisfaction amount of hth objective function and the optimal 

value of variable cN = min�gfEXF
 expresses the smallest satisfaction degree of the objective functions. 

To generate a balanced compromise solution, the aggregation function of the TH method surveys for a 

middle value among the lower bound for satisfaction level of objectives and the weighted sum of these 

attainment levels, based on the value of d. Actually, arbitrary solutions can be achieved by trading off 

the amounts of parameters ef and d (Wang and Shu, 2007). The algorithm can be summarized as 

follows: 

i. For each objective function, determine the positive ideal solution (PIS) and the negative ideal 

solution (NIS). To obtain PISs, i.e., (^l-$m, Xl-$m) and (^n-$m, Xn-$m), it is needed to solve the main 

bi-objective problem for each objective function separately. The NIS for each objective 

function can be attained by Eqs. (54) and (55). 

^lo$m = ^lCXn-$mD  (54) 

^no$m = ^nCXl-$mD  (55) 

 

ii. For each objective function, determine a linear membership function by Eqs. (56) and (57). The 

membership functions are illustrated in Fig. 3. 

glEXF =
pqr
qs 1                              �7 ^l < ^l-$m^lo$m − ^l^lo$m − ^l-$m              �7 ^l-$m ≤ ^l ≤ ^lo$m

0                              �7 ^l > ^lo$m
  (56) 

gnEXF =
pqr
qs 1                              �7 ^n < ^n-$m^no$m − ^n^no$m − ^n-$m              �7 ^n-$m ≤ ^n ≤ ^no$m

0                              �7 ^n > ^no$m
  (57) 

 



22 

 

iii. Replace the main multi-objective MILP into a single-objective one by the TH compromising 

method. 

iv. Specify the amount of the reimbursement coefficient (d) and the related weight of the fuzzy 

goals (ef), and then solve the relative single-objective MILP. Other solutions can be rendered 

using different values of d and ef if required. 

 

 

Fig. 3. Membership function related to objectives.  

 

 

5.2. Self-learning non-dominated sorting genetic algorithm (SNSGA-II) 

In order to evaluate the qualities of the proposed model with the consideration of both environmental 

and economic aspects, it is necessary to design heuristic or meta-heuristic algorithms to examine the 

problem in large-sized examples. To solve the multi-objective optimization problems, Deb et al. (2000) 

introduced an algorithm called NSGA-II. It is a completely affirmed algorithm in the research on multi-

objective optimization (Mohammadi et al., 2019; Maiyar and Thakkar, 2019; Timajchi et al., 2019; 

Sazvar et al., 2016). To have a profound effect on the efficiency of the algorithm, the occurrence 

probabilities of the mutation and crossover are considered as dynamic parameters in developing NSGA-

II. The proposed algorithm is inspired by a self-learning genetic algorithm proposed by Kostenko and 

Frolov (2015) for solving the single-objective optimization problems. The different sub-procedures of 

the algorithm are succinctly explained as follows: 

5.2.1. Initial population 

0

1

^f-$m ^fo$m 

^fEX�F 

gvwEX�F 
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To make the initial population, some members composed of several routes including customers and 

individuals must be randomly generated whose number is determined by the population size. In this 

paper, the size of the first generation is shown by npob and we assume that every member involves the 

whole data related to a solution (S). 

5.2.2. Fitness function 

The evolutionary computation and search of the algorithm is done based on the fitness function upon 

which the fitness merits of all members are determined and assessed continuously. Thereafter, the 

members will be prioritized, picked and decided whether to remain in the next generation. For the 

problem in this paper, we take the objective functions, the total transportation cost and emissions 

generated by vehicles, as the fitness functions. 

5.2.3. Non-dominated sorting 

In the proposed algorithm, the basis of listing and sorting solutions is comparing with some available 

solutions that are better than others. When there are not any better solutions than one reached solution, 

it is considered as a non-dominated solution and benefits from more points. Moreover, the degree of 

competency and appropriateness assigned to any solution is determined based on the ranking of that 

solution and the lack of overcoming other solutions. 

5.2.4. Crowding distance assignment 

Crowding distance assignment is a density measure of solutions in the neighborhood which ensures that 

the optimization procedure keeps the variety of a population. Crowding distance attributes were used 

in order to set the solutions dispersion more eligible so that they can be distributed uniformly in the 

feasible solution space. After the non-dominated sorting and crowding distance sorting, all members 

have two features: non-domination status and crowding distance which can be applied in selecting 

members with more desirability. 

5.2.5. Crossover and mutation 

In each iteration of the self-learning NSGA-II, the child members can be generated by doing the 

crossover and mutation operation on some of the solutions which are chosen as parents. The selection 

of parents is conducted based on the occurrence probabilities of crossover and mutation. Convers to the 

traditional NSGA-II, these occurrence probabilities are not constant in the self-learning version and can 
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vary from generation to generation, i.e. 3��xand 3 �x, where i is the index of generation and s is the 

index of the solution. So after applying the mutation or crossover, the fitness function value for each 

chromosome is calculated and the occurrence probabilities of mutation and crossover are updated 

accordingly (Kostenko and Frolov 2015). The fineness function is not the only factor to update the 

probabilities, the similarity index of the generation effects too, meaning that, if the mutation operator 

in a generation leads to a mating pool with many duplications, the mutation probability will decrease 

for the next generation accordingly, and vice versa. 

As illustrated in Fig. 4, the offspring can inherit part of the genes from each parent. In order to achieve 

this purpose, first of all, we randomly select two solutions (based on the occurrence probability of 

crossover, 3 �x) among the population as parents (7l and 7n) and apply the crossover. According to the 

proposed crossover operator, at first, a route in Parent 1 is selected randomly and a sub-route is 

randomly chosen from that route. The sub-route contains at least one node and at most the whole route. 

Then, the sub-route is inserted in the best possible place, which is found by a greedy heuristic called 

Best-Insertion (Bjarnadottir, 2004). After inserting the sub-route into Parent 2, if pickup from a 

customer happened before delivery to that customer (the inverse occurred for the individuals), the order 

of the two operations is changed. 

Delivery Pickup                   
                    
Parent 1: Vehicle 1 4 1 2 5 3   Parent 2: Vehicle 1 1 6 4 4 5     
 Vehicle 2 7 6 4 3 6 2   Vehicle 2 2 3 7       
 Vehicle 3 1 5 7      Vehicle 3 1 3 2 6 5 7    
                    
                    
 Vehicle 1 6 4 4     Offspring: Vehicle 1 6 4 4       
 Vehicle 2 3 7       Vehicle 2 3 7        
 Vehicle 3 1 3 2 6 5 7   Vehicle 3 1 1 2 5 3 2 6 5 7 

 

Fig. 4. A representation of the linear crossover operator. 

 

Next, to generate some mutated populations, the mutation operator is employed. To achieve this, at first, 

based on the mutation probability (3��x), we choose a member of the main population by the binary 

selection operator (7)  and perform a uniform mutation method as presented in Eq. (58): 

7%yz{ ≤ 7 + |. C7}~z − 7}�%D | ∈ j1, 2k (58) 
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Where 7%yz{ is the offspring, 7}~z and 7}�% are the lower and upper bound of the variable, and | is a 

random value in the range of 0 to 1. The process continues until the mutated population touches the 

predetermined size. Ultimately, new generated members have to be integrated with the main 

community. Among merged populations, some members as much as the initial population should be 

picked while other members must be relinquished. At this stage, the more desirable members would be 

chosen. This operation is repeated until a stop criterion is fulfilled. The pseudo code of the self-learning 

NSGA-II is presented in Pseudo code 1. 

Pseudo code 1. The Self-learning Non-dominated Sorting Genetic Algorithm-II (SNSGA-II) 

Step 1. Set parameters 

Step 2. Generate an initial population P with size npob and set � = 1 

Step 3. Evaluate objective functions; 7lE�F and 7nE�F ∀� ∈ � 

Step 4. Divide the population into non-dominance sorting 

Repeat: 

Step 5. Calculate crowding distance for every member of ��  
Step 6. Update the occurrence probabilities of mutation and crossover; 3��xand 3 �x. 

Step 7. Generate a new population of offspring, P���, based on ��  
Step 8. Apply crossover and mutation operator to each solution of �~�z, and calculate 7lE�F and 

7nE�F ∀� ∈ �~�z 

Step 9. Combine parent population ��  and offspring population �~�z, perform non-dominate sorting 

Step 10. Build ��Zl with the first npob elements of �� ∪ �~�z following partial order and set � = � + 1; 

Until a stop criterion is fulfilled 

 

6. Computational results and sensitivity analysis 

In this section, to illustrate the validity and practicality of the proposed mathematical model and 

concerning solution methods, we first apply them on a real case inspired by a home health service. 

Then, to test the performance of our SDPP, we will conduct a comparison experiment with two closely 

related PDP. 

 

6.1. A case study 
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To verify the applicability of the model as well as the effectiveness of the fuzzy multi-objective method 

and self-learning NSGA-II, we provide real numerical evidence based on the collected data from a real 

home health service provider in the Middle East and run the SDPP on this case. 

The company is a local home care business selling and renting a wide range of goods in patients’ homes 

and providing basic care. In the urban area, approximately 13 clients daily take the rental service of 

HHMs from the company. The 13 clients and 3 owners are respectively labeled as purple and blue stars 

on the map displayed in Fig. 5, where the depot is labeled as a red triangle. Every morning, collected 

HHMs at the main depot and those that are rented from individuals are delivered to the clients. The 

capacity, generated emission and the traveling cost of the used vehicles are known. The demands and 

the time windows of each customer and the duration of their rent are assumed constant and estimated 

based on the records and requests of each customer. The customers' addresses and requests are detailed 

in Appendix A. 

 

 

Fig. 5. Location of main office of the company, 13 clients and 3 owners. 

 

At the first step of the computational analysis, the equivalent crisp model is solved in terms of the 

amounts of the objective function and relative membership function. In the simulated example, it is 

assumed to have thirteen applicants, three individual owners, and four vehicles. Each vehicle starts its 

service from the depot at 7:00 AM until the end of that day at 20:00. We set the penalty coefficient in 
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the objective function for unit-time violations of the specified time window between 2-12 and the 

setup/pickup time between 15-30 minutes. We also consider a free pickup time window and a maximum 

returning time of 8 hours. These settings are determined according to the delivery and pickup and 

operations incurred under the real situation. Also, the time of traveling between each pair of points is 

assumed follows the uniform distribution. Moreover, the carbon emission for different types of vehicles 

can be estimated based on standard rules as suggested by Mirzapour Al-e-hashem et al. (2013). To 

analyze the mixed-integer linear model, the case is carried out using IBM ILOG CPLEX version 12.8 

on a computer Intel(R), Core (TM) i3-M330 CPU at 2.13 GHz and 4.0 GB of RAM. 

Lower and upper bounds of objective functions are calculated separately to make fuzzy membership 

functions. Table 2 reveals the details regarding the case problem. The numerical results of the exact 

approach on the case study are summarized in Table 3. The corresponding solutions show that the 

amounts of objective functions are approximately close to the obtained ideal solutions and there is not 

any appreciable difference among various λ-values in the TH method. The quality of the acquired 

solutions depends on the designated parameters, in spite of some vacillations, they are relatively 

acceptable. The results of the case study are shown in Fig. 6. 

 

Table 2 

Nadir and ideal solutions. 

Objective function ^H    ^� 

^l -4.38E+04  -2.23E+04 ^n 2.14E+03  10.52E+03 

 

Table 3 

Computational results for case study. 

Method d-values 
Objective function   Membership function ^l ^n  gE^lF gE^nF 

TH 

0 -4.38E+04 2.36E+03  1 0.974 

0.3 -4.38E+04 2.30E+03  0.998 0.981 

0.5 -4.36E+04 2.28E+03  0.991 0.983 

0.7 -4.34E+04 2.13E+03  0.982 1 
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1 -4.33E+04 2.25E+03  0.979 0.986 

Mean  -4.36E+04 2.26E+03  0.990 0.985 
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Fig. 6. Optimized routing plan considering three vehicles. 
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6.2. Trade-offs between economic and environmental objectives 

In order to expose compromises between economic and environmental objectives in our case study, 

with changing the weight of objective functions three components the results are investigated. Fig. 7 

shows the analysis of the objective functions yielded by the company’s case where the λ-value is set to 

0.5. The results expose the comparison between economic and environmental objectives by changing 

the weights. As expected, the values of the objective functions are reduced when we increase the 

corresponding weight. It can be also observed that there are numerous non-dominated solutions for the 

TH method. Although the reduction in the second objective, total emissions, from 2556 to 2139 arises 

in cost from -43821 to -42946, win-win situations can be similarly detected. As it is observed amid 

instances 5 and 6, both transportation-related costs and total emissions can be decreased simultaneously. 

With a higher change in weights, lower total cost and emissions in points 1 and 8, respectively, results. 

In these cases, while the weights in the integrate function are reduced, transportation costs and total 

emissions increase. It is worthwhile to note that setting sustainability targets requires an evaluation of 

economic and environmental effects and such evaluations could be valuable for decision-makers. 

 

 

Fig. 7. Trade-offs between economic and environmental objectives. 
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To examine the effectiveness of the proposed algorithm in comparison with the exact approach, 

different illustrative examples have been carried out. To do so, the parameters are generated randomly 

using uniform distributions which their lower and upper bounds specified in Appendix B. Thereat, 

figures in the bracket denote lower and upper bound of the uniform distribution, respectively. For this 

comparison, the TH method is used and d-value set to 0.5. 

Then, the self-learning NSGA-II was executed taking the following parameters to show the detail results 

of our instances: the population size is 2×|the number of non-dominated solutions recorded by exact 

methods|, the initial crossover rate is 0.9, and the initial mutation rate is 0.15. The self-learning NSGA-

II stop criterion was reached when after finalizing an iteration, the computation time employed by 

CPLEX was exceeded. Several tests have been done to adjust these parameters, based also on the results 

reported by some bi-objective routing problems. 

Table 4 provides a summary of the results reported by our SDPP for two points of the Pareto set. In 

this manner, all test problems are first solved via CPLEX and then are solved by self-learning NSGA-

II. In this table, columns 2-4 show the size of instances, characterized respectively by the vehicles of 

the fleet, the number of owners and applier patients. Columns 5-7 show the results reported by CPLEX 

(^��) including economic (^l) and environmental (^n) objectives and the best-known execute time, 

respectively. Columns 8-10 show the computational results obtained by self-learning NSGA-II (^��). 

The last two columns report the gap among them which is determined by ∆�= v���v���v��� . It should be noted 

that CPLEX was not able to solve the larger-scale instances. Therefore, for medium and large-sized 

problems, the best bounds of CPLEX obtained after two hours are used to calculate the gaps. In test 

problems 9 and 10, CPLEX is discontinued as “out of memory”, and until the reported time, it could 

not reach a feasible solution. 
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Table 4 

Comparison of solution approaches performance on different instances. 

Instance 
Dimension CPLEX    Self-learning NSGA-II   Gap 

V L K ^l Time (Sec.) ^n  Time (Sec.)  ^l ^n Time (Sec.)  ∆l ∆n  

1 1 1 4 -1.66E+04  316  2.85E+02 255  -1.62E+04 2.91E+02  364   0.025 0.019 

2 2 2 7 -3.14E+04  799  4.38E+02 605  -3.10E+04 4.59E+02  1,022   0.012 0.047 

3 2 2 10 -3.98E+04  1,391  1.01E+03 1,030  -3.74E+04 1.02E+03  1,456   0.06 0.011 

4 3 3 13 -4.36E+04  2,323  2.14E+03 1,671  -4.13E+04 2.22E+03  1,645   0.052 0.037 

5 3 4 15 -5.17E+04  3,185  2.27E+03 2,275  -4.50E+04 2.42E+03  2,051   0.13 0.065 

6 4 4 17 -5.65 E+04  6,393  2.36E+03 4,349  -4.68E+04 2.61E+03  3,171   0.172 0.106 

7 5 5 17 -5.71E+04 7,200 2.84E+03 7,200  -4.91E+04 3.11E+03  3,843   0.141 0.095 

8 5 6 19 -6.43E+04 7,200 3.29E+03 7,200  -5.72E+04 3.59E+03  4,977   0.11 0.091 

9 6 4 24 N/A 10,800 N/A 10,800  -7.00E+04 5.65E+03  7,714   - - 

10 7 5 30 N/A 10,800 N/A 10,800  -9.12E+04 6.17E+03  12,614   - - 

Average              0.088 0.059 

V: the number of available vehicles in the fleet 

L: the number of applicants 

K: the number of available individual owners 
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These two approaches are compared for different instances and Table 4 shows the computational 

results. As seen in Table 4, CPLEX cannot solve the large-scale problems optimally in a reasonable 

time, we rely on the lower bound reported after two hours. On this matter, self-learning NSGA-II, on 

average, has a better performance in larger-sized cases in terms of computational time. Moreover, the 

differences between the results of the CPLEX software and the best solutions of self-learning NSGA-

II are adequately small and it converges to near-optimum solutions in less than three hours. To have an 

idea of the execution time, Fig. 8 depicts the computational time (in seconds), expended by self-learning 

NSGA-II and CPLEX for different instances. Here we can note that, in medium and large-sized 

problems, without any exception, the execution time of self-learning NSGA-II is shorter than the exact 

methods. 

 

 

Fig. 8. Computational time, categorized by different instances. 
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Fig. 9. Pareto solutions of different generations for instance 9. 

 

To assess the performance of the proposed self-learning NSGA-II and their relative dispersion in the 

Pareto frontier, we employed the following metrics and it is compared with TH method: 

Spacing metric (SM): 

Spacing is one of the metrics used to estimate the distance variance and distribution of neighboring 

solutions in a known Pareto front. Lower SM displays a better dispersion of the solutions in the frontier 

(Srinivas and Deb, 1994). Eq. (59) outlines the spacing metric. 

�* = @��� − �̅�%�l
��l EU − 1F. �̅�   (59) 

where n is the number of Pareto solutions, �̅ is the average Euclidean distance in sorted Pareto solutions 

and 

�� = �C^l�Zl − ^l� Dn + C^n�Zl − ^n� Dn
  (60) 
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Mean ideal distance (MID): 

This metric, which was proposed by Zitzler and Thiele (1998), describes the average distance between 

solutions in the Pareto frontier and a hypothetical ideal solution. The smaller value of MID signs a better 

performance of the method. The following equation defines the MID metric. 

*0� = @ �� ^l� − ^l�yx{^l}~z − ^l}�%�n + � ^n� − ^n�yx{^n}~z − ^n}�%�n%
��l U�   (61) 

 

where �̂}~z and �̂}�% are maximum and minimum amounts of jth objective among solutions in Pareto 

frontier and �̂�yx{ is the ideal solution in all problems. 

Fig. 10 summarizes the value of the Spacing metric for the TH method and self-learning NSGA-II for 

different instances. Notably, lower values of spacing metric specify that solutions be distributed evenly. 

Based on this figure, although the TH has less spacing metric than the self-learning NSGA-II in most 

cases, the respective gaps are not significant and both approaches reach a further solution space and 

diversify the search procedure. 

Fig. 11, which compares the performance of the TH method and self-learning NSGA-II based on the 

MID metric, confirms that obtained solutions by CPLEX are closer to true Pareto front. According to 

the diagram, in all cases, the TH method has the monotony and higher quality of the Pareto frontier. 

 

Fig. 10. SM in TH method versus self-learning NSGA-II. 
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Fig. 11. MID in TH method versus self-learning NSGA-II. 

 

6.4.  Sharing versus no-sharing scenarios 
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Therefore, to demonstrate the impact of the sharing policies on the optimal solution, several numerical 
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B.  
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carbon emissions. As seen in Fig. 12, these are in addition to the financial benefits that individuals will 

receive and the benefits of expediting services to patients at a lower cost. 

 

Table 5 

The overall impact of sharing economy on objective functions. 

Instance 
Dimension With sharing policies   Without sharing policies  Gap 

V L K ^l ^n   ^l ^n  ∆l ∆n  

1 1 1 4 -1.66E+04 2.85E+02  -1.32E+04 3.45E+02  0.26 0.17 

2 2 2 7 -3.14E+04 4.38E+02  -2.68E+04 4.90E+02  0.17 0.11 

3 2 2 10 -3.98E+04 1.01E+03  -3.02E+04 1.25E+03  0.32 0.19 

4 3 3 13 -4.36E+04 2.14E+03  -3.49E+04 2.70E+03  0.25 0.21 

5 3 4 15 -5.17E+04 2.27E+03  -4.05E+04 2.49E+03  0.28 0.09 

6 4 4 17 -5.65 E+04 2.36E+03  -4.18E+04 3.43E+03  0.35 0.31 

7 5 5 17 -5.91E+04 2.66E+03  -4.54E+04 3.03E+03  0.30 0.12 

8 5 6 19 -6.70E+04 3.17E+03  -5.29E+04 3.83E+03  0.27 0.17 

9 6 4 24 -8.44E+04 4.69E+03  -6.21E+04 6.56E+03  0.36 0.29 

10 7 5 30 -1.15E+05 5.33E+03  -7.50E+04 7.40E+03  0.53 0.28 

Average           0.31 0.19 

V: the number of available vehicles in the fleet 

L: the number of applicants 

K: the number of available individual owners 
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Fig. 12. The company's economic benefits versus individuals’. 

 

Due to the probability nature of the participation rate and the number of shared devices, we present a 

sensitivity analysis on the number of shared HHMs by individuals to prove the attractiveness of the 

sharing policy. To do so, the test problem 10 with 30 customers is solved for different numbers of 

HHMs. As illustrated in Fig. 13, not only the increasing individual's participation has a significant 

impact on the revenues, but also it obviously indicates the positive role of the sharing policy on reducing 

carbon emissions. 

In Fig. 14 a sensitivity analysis is done to examine the impact of the fleet size on the optimal solution 

and identify the sufficient size of the fleet over which keeps the sharing policy on its profitable role. As 

observed in Fig. 14, five vehicles in the last example lead to the reduction of the aggregated objective 

function. 

 

 

Fig. 13. Total system profits and total emissions as a function of the number of shared HHMs by 

individuals. 
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Fig. 14. Relationship between the objective functions and the number of vehicles in fleet. 

 

In order to represent the impact of increasing individuals’ participation in the amount of time windows 

violation, we provide a boxplot graph to compare the changes in the average latency and early arrival 

time for each considered number of shared HHMs. As seen in Fig. 15, it leads to a noticeable decrease 

in the average time window violation. As intuitively expected, when the number of shared HHMs 

increases, the arrival time in delivering HHMs to the patients will reduce, thus it led to increasing applier 

satisfaction. 

In summary, the computational experiments demonstrate that the proposed model can be successfully 

used by the practitioners to stablish a transportation service in an item sharing business to guarantee the 

minimum transportation costs which motivate the individual owners further to involve and concurrently 

respect the increasing concerns about GHG emissions through omitting the direct transportations from 

patients to hospitals and vice versa. 
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Fig. 15. Boxplots of the average latency and early arrival time for each considered number of shared 

HHMs. 

 

7. Conclusions 

This research is the first try to introduce and investigate the potentials of sharing concept on the green 

delivery-pickup problem of scarce commodities like HHMs, which considers a framework naturally 

extensible for variants of items. We formulated a mathematical model of the problem that allows 

coordinating the transfer of HHMs among clients through the various modes for delivering and picking 

up. When HHMs is delivered to the customer, any other vehicle can be contacted to the customer for 

taking HHMs back, therefore locations in the SDPP are allowed to be visited more than once. To solve 

the bi-objective mathematical model, first an exact approach, the Torabi and Hassini’s method was 

applied. Then, to solve the medium- and large-sized problems in a reasonable time, a self-learning non-

dominated sorting genetic algorithm is then proposed, and validated by solving an extensive set of test 

problems.  

Finally, the effectiveness and applicability of the proposed model are demonstrated by the 

computational results on a real case. Our tests confirm that the economic and environmental benefit of 

a scarce delivery-pickup platform significantly profits from economies of sharing in both solution 
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techniques. Therefore, our sustainable and sharing structure is gained as a result of healthcare 

transportation planning.  

Our findings in this study open up numerous directions. This collaborative platform can be developed 

in other industries like transportation (e.g. car and bike-sharing system), consumer goods (e.g. sharing 

a book and toy) and services (e.g. crowdfunding and lending), and facilitated the increase of quality 

through transparency and a stable relationship between providers and customers. The proposed model 

can be employed to allow the reuse and already utilizing of different commodities when not in use and 

provide maximum benefits for individuals and consumers. The sharing pattern is dominated by a 

centralized platform that provides a trusted marketplace for exchange and enforces standards; however, 

some activities can be moved to more distributed networks and the problem is formulated as a bi-level 

model. 

The article has some limitations that will be the subject of future researches. For example, in order to 

improve the results, better routing decisions can be made when aiming at extending more factors such 

as multiple supply depots, the speed of the vehicles, customer priority and road condition in a general 

framework. Furthermore, the effects of dynamic and stochastic routing can be investigated in future 

works. These issues also will turn our idea toward more practical via trade-off among economics, 

services, risks, and environmental issues. In addition, the use of different exact methods such as column 

generation techniques might be interesting ideas. 
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Appendix A. A detailed explanation of the case study's data 

The distance data and the other information used for the company’ case is shown in the following table. 

The capacity of all vehicles is 5 items. For each vehicle of the fleet, we set the rate of fuel consumption 

and carbon emission to 8 and 2, respectively, and we assume a fixed gas-oil price of 50 cents per liter 

per kilometer. 

- The No. 0 stands for the main office of the company that can be regarded as the depot. 

- The longitude and latitude of the locations are taken from the Google map coordinate 

system. 

- Both the earliest and the latest times are presented in minutes beginning from 7 am. 

- When the vehicles are ready to give service, the earliest arrival time set 0 which corresponds 

to 7 am of a day. 

 

No. Longitude Latitude 
Earliest arrival 

time 

Latest arrival 

time 

Rental 

Time 

Setup 

time 

Pickup 

time 

0 35/7473 51/2138 0 - - - - 

1 35/7214 51/2130 30 90 45 18 21 

2 35/7549 51/1955 75 105 45 20 17 

3 35/7415 51/1576 205 240 45 21 12 

4 35/7212 51/1744 130 170 45 24 25 

5 35/7542 51/1900 280 320 45 25 27 

6 35/7275 51/1717 35 70 45 28 15 

7 35/7424 51/2122 90 135 45 20 30 

8 35/7505 51/1860 65 100 45 18 20 

9 35/7248 51/1913 315 350 45 25 24 

10 35/7482 51/1944 420 465 45 15 24 

11 35/7211 51/2006 45 85 45 17 20 

12 35/7278 51/1589 90 110 45 26 15 

13 35/7504 51/2235 120 140 45 24 26 

14* 35/7204 51/1696 - - - 22 17 

15* 35/7324 51/1824 - - - 15 25 

16* 35/7201 51/2126 - - - 21 27 

* Individual owners 

 

Appendix B. Sources of the nominal data generated randomly. 
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Parameter Symbol Range 

Setup time ��� ~ uni[15,30] 

Pickup time ��� ~ uni[15,30] 

Distance ���  ~ uni[2,20] 

Customer rental time ��� ~ uni[30,60] 

Rental price �� ~ uni[100,200] 

Returning time ��� ~ uni[480,600] 

Payment to owners �# ~ uni[1500,3000] 

Capacity �� ~ uni[5,10] 

Total inventory at the depot  !� ~ uni[5,10] 

Fuel consumption rate fv ~ uni[1,4] 

variable costs  ��� ~ uni[0.5,3.2] 

Travel time tij ~ uni[10,90] 

Earliest pickup time #�$%& ~ uni[0,30] 

Latest pickup time ��$%& ~ uni[750,780] 

Earliest delivery time #�( ~ uni[30,480] 

Latest delivery time ��( ~ uni[45,540] 

Penalty )� ~ uni[2,12] 

Carbon emission 6� ~ uni[8,15] 

 




