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Workload smoothing on assembly lines, which aims to evenly assign tasks to stations, supports workforce planning and resource optimization. In this paper, we study smoothing assembly lines and develop a problem-specific heuristic to efficiently solve large-sized instances. To build solutions, the algorithm uses a number of well-known priority rules for task assignment in conjunction with a probabilistic decision-making procedure for closing workstations. We next conduct an experimental design to select the best performing priority rules and tuning of the probabilistic decision-making procedure.

The efficiency of our algorithm is tested and demonstrated through an extensive experimental study.

Introduction

Assembly lines (AL) have been traditionally used since decades in many industries such as automotive and electronics, as they enable mass production of standardized products efficiently. These systems are composed of serially located workstations where workers continuously perform operations.

Designing and balancing different line configurations and optimizing their capacity usage have been taking the attention of the researchers and a vast literature has already developed in this field. The related studies can be classified according to the number of product models assembled: simple assembly line balancing problem (SALBP), mixed assembly line balancing problem (MALBP), and multi-model assembly line balancing problem (MMALBP) lines. Simple lines produce one homogeneous product and require similar production processes for all the production. In mixed-model lines, several versions of the same product are assembled. In multi-model assembly lines, production processes might differ significantly and require additional set-ups [START_REF] Scholl | Balancing and Sequencing of Assembly Lines[END_REF]. In addition to the above classification, assembly line balancing problems can be classified according to the problem objective [START_REF] Boysen | Assembly line balancing: Which model to use when?[END_REF][START_REF] Battaïa | A taxonomy of line balancing problems and their solution approaches[END_REF]. Minimizing the number of stations or the cycle time (respectively, type I and type II problems) are the most common objectives in the existing literature. In this research, we focus on simple lines and deal with the workload smoothing problem, which is referred to as the type III problem [START_REF] Ugurdag | Designing paced assembly lines with fixed number of stations[END_REF][START_REF] Eswaramoorthi | Flow index based line balancing: a tool to improve the leanness of assembly line design[END_REF].

Workload smoothing, that consists of evenly assigning tasks to stations [START_REF] Moodie | A heuristic method of assembly line balancing for assumptions of constant or variable work element times[END_REF], has several benefits. It makes workforce and payroll planning easier and improves resource utilization. It also helps reduce ergonomic risks and minimizes worker fatigue and accidents that could be caused by disproportionate workloads [START_REF] Otto | Incorporating ergonomic risks into assembly line balancing[END_REF][START_REF] Groover | Work systems and the methods, measurement, and management of work[END_REF][START_REF] Finco | Workers' rest allowance and smoothing of the workload in assembly lines[END_REF]. We refer to [START_REF] Groover | Work systems and the methods, measurement, and management of work[END_REF] for a discussion about the use of smoothing to improve general workstation design. Moreover, workload smoothing enhances work equity by dividing the work fairly among the workers [START_REF] Rachamadugu | Improving the equality of workload assignments in assembly lines[END_REF], and it has been found that in mixed-model assembly lines, smoothing reduces short-term work overloads [START_REF] Emde | Balancing mixed-model assembly lines: a computational evaluation of objectives to smoothen workload[END_REF]. Despite all these important benefits in practice, research on workload smoothing, the type III problem, is scant compared to other problem types.

In the literature, both exact and heuristic approaches have been implemented for solving smoothing problems by using different objective functions. [START_REF] Pinnoi | A branch and cut approach for workload smoothing on assembly lines[END_REF] use a branch & cut method to minimize the maximum idle time for a specified number of stations, and [START_REF] Azizoglu | Workload smoothing in simple assembly line balancing[END_REF] employ a branch & bound algorithm to minimize the sum of squared workstations loads. [START_REF] Walter | A note on "workload smoothing in simple assembly line balancing[END_REF] corrects the lower bound of [START_REF] Azizoglu | Workload smoothing in simple assembly line balancing[END_REF] and proposes a tighter formulation. These exact method-based works emphasize the high complexity of the problem and the difficulty of solving it, as only small-sized instances which contain up to 30 tasks are solved to optimality.

Larger-sized instances (up to 148 tasks) are solved using heuristic methods, which are mainly metaheuristics. [START_REF] Kim | Genetic algorithms for assembly line balancing with various objectives[END_REF] use genetic algorithms to minimize the mean squared deviation from the mean workstation load. Further, using the same method, [START_REF] Kim | A heuristic-based genetic algorithm for workload smoothing in assembly lines[END_REF] minimize the mean absolute deviation (MAD), which measures the station loads' deviations from the mean workload. [START_REF] Ugurdag | Designing paced assembly lines with fixed number of stations[END_REF] focus on solving the type II problem; however, the second stage of their algorithm minimizes workload variance as a secondary objective. [START_REF] Nearchou | Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization[END_REF] addresses a bi-criteria problem with minimization of the cycle time and MAD using a particle swarm optimization-based method. [START_REF] Eswaramoorthi | Flow index based line balancing: a tool to improve the leanness of assembly line design[END_REF] In this study, we develop a problem-specific heuristic procedure that solves large-sized instances (up to 1,000 tasks) efficiently. Our algorithm's efficiency is mainly due to the use of a new probabilistic rule for closing stations, that is specifically designed to achieve the smoothing objective. It is also enhanced by a thorough experimental design we conduct for selecting the best-performing combinations of priority rules used for task assignment and parameter values of the probabilistic rule used for closing stations.

Developing efficient heuristics contributes both to the practice and theory. Relatively efficient heuristics support practitioners in quickly generating reliable solutions and evaluating several alternatives. In addition, they can enhance the efficiency of several optimization methods, such as the branch and bound algorithms [START_REF] Otto | How to design effective priority rules: Example of simple assembly line balancing[END_REF]. The efficiency of our heuristic is demonstrated through extensive computational experiments that we real-ize using well-known benchmark data sets from [START_REF] Scholl | Balancing and Sequencing of Assembly Lines[END_REF] and [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing[END_REF]. At this point, we refer to the experimental analysis and comparison studies of [START_REF] Amen | Heuristic methods for cost-oriented assembly line balancing: A survey[END_REF], [START_REF] Pape | Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements[END_REF], Li et al. (2017a) and Li et al. (2017b) on heuristic algorithms for solving other line balancing problems.

The remainder of this paper is organized as follows. First, we present a formal definition and a mathematical model of the problem in section 2. Then, we build the solution algorithm and explain its components in section 3. Later, in section 4, we present the experimental analysis and computational results. Finally, conclusions and directions for future research are given in Section 5.

Problem Definition

We consider a simple assembly line in which a fixed number of tasks, (n), are undertaken on a given number of workstations, (K). Tasks are assigned to the stations so that a product could be assembled within a given cycle time, (C). In addition, precedence constraints, which define the processing order of the tasks, should be respected. A graph, G = (N, A) where N is the set of nodes and A ⊆ N × N is the set of arcs represents these temporal relations. The objective is to balance the workloads on the K stations, formally, to minimize the sum of squared differences between stations' times and the cycle time (C). Any task (i) can be characterized by t i , P i , and F i , which are, respectively, the task time, the set of its direct predecessors, and the set of its direct followers. Let w k be the load of station k and x ik , a decision variable that takes the value 1 when operation i is assigned to station k, the mathematical formulation of our problem is given as follows:

Min K k=1 (C -w k ) 2
(1) subject to

K k=1 x ik = 1, for i = 1, . . . , n (2) 
K k=1 kx ik ≤ K k=1 kx jk , ∀(i, j) ∈ A (3) w k = n i=1 t i (x ik ) ≤ C, for k = 1, . . . , K (4) 
x ik ∈ {0, 1} ∀i, k. (5) 
(1) represents the objective function. Equations (2) ensure that a unique station is assigned to each operation. Inequalities (3) and (4) represent, respectively, the precedence and cycle time constraints. This problem has

shown to be strongly NP hard [START_REF] Azizoglu | Workload smoothing in simple assembly line balancing[END_REF].

Note that the objective function in (1) corresponds to what is usually called the workload smoothness index [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF][START_REF] Mozdgir | Using the taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing[END_REF]. [START_REF] Azizoglu | Workload smoothing in simple assembly line balancing[END_REF] show that minimizing this objective function is equivalent to minimizing the sum of the squares of the total workstations loads:

Z = K k=1 w 2 k (6)
Hereafter, we address minimizing this function. To solve this problem, we develop a heuristic.

Solution Approach and the Algorithm

In this section, we first introduce the solution approach that incorporates specific characteristics of the smoothing problem. Then, we present the algorithm that we have built based on the solution approach.

Solution Approach

To solve the problem, we build a multi-pass heuristic algorithm that uses several priority rules for assigning tasks to workstations combined with a probabilistic rule for closing the station. Using different priority rules helps generate alternative solutions. In addition, by employing a probabilistic rule, a different set of solutions is generated each time the algorithm is run.

Priority rules

We use a priority rule for choosing a task among several eligible tasks that all respect the precedence relationships. For this purpose, 21 priority rules listed in [START_REF] Otto | How to design effective priority rules: Example of simple assembly line balancing[END_REF] 1 are tested, out of which 8 rules are definitely integrated in the algorithm based on the experimental design performed in section 4.1.

Probabilistic rule for closing workstations

As the overall objective of our work is to smooth the stations' workloads, it is obvious that it might not be optimal to fully use the station's capacity.

Indeed, even in cases where a workstation has enough idle time that could be used for assigning one or more remaining tasks, it might not be optimal to assign any of them to this workstation. Instead, achieving the smoothing objective might require closing the workstation and immediately opening the next one. Considering this problem-specific characteristic, we develop a probabilistic decision-making rule for closing workstations that aims to evenly distribute the workload among stations. This rule is based on a threshold value (T ) of the workload specific to each workstation, that is equal to the average load on the currently open workstation and those which are still to be opened for task assignment. Formally, assuming that r is the currently open workstation, then, a load of n i=1 t i -r-1 k=1 w k time units is still to be assigned to this workstation and the remaining K -r ones. Therefore, the threshold of station r that we denote by T r is expressed as follows:

T r = n i=1 t i -r-1 k=1 w k K -r + 1 (7)
Observe that T r represents the ideal load of the current workstation r with regards to the smoothing objective. However, given the indivisibility of tasks, there is no guarantee that it will be possible to reach T r on workstation r. Therefore, it is useful to have a rule that allows for closing the station once its workload reaches a value around T r . For this purpose, we define a minimum closing load (M CL) for the workstation r based on the threshold value of this station T r in conjunction with the probability function for closing the workstation as follows: 

M CL r = αT r (8)
P(close r) =      0 if 0 ≤ w r ≤ M CL r w r -M CL r C -M CL r if M CL r < w r ≤ C (9) 
Figure 1 shows the behavior of this probability function. Observe that our rule respects the workstation's capacity constraint as it imposes the decision of closing the workstation once the cycle time is reached. On the other hand, this rule prevents from closing the workstation before the M CL is reached.

We also note that the value of the coefficient α has a key role for determining when to close the workstation. Small values of α allow for closing the workstation at relatively low loads and result in a slow increase of the probability of closing the workstation following the assignment of tasks. On the other hand, higher values of α prevent from closing the workstation early and result in a quick increase of the probability of closing the workstation following the assignment of tasks. Hence, small values of α might lead to underutilization of stations capacity, so that the algorithm would end with all stations being closed while there are still unassigned tasks. To deal with this issue, we integrate a repair procedure to the algorithm.

Alternatively, with higher values of α, there is a risk of poor quality solutions characterized by first workstations being overloaded while subsequent ones are underloaded. Considering these aspects, we make a comprehensive experimental design to choose the best performing values of α that allow for balancing the risks of underloading and overloading workstations. The implementation of this experimental design is detailed in section 4.1.

Repair Procedure

It is obvious that the solution approach developed above could result in infeasible solutions. Specifically, partial solutions could occur in which all workstations are closed while some tasks remain unassigned. In this case, a repair procedure is applied. This repair procedure uses a constructive algorithm and works as follows: the remaining unassigned tasks are ordered considering the precedence constraints and the current priority rule. Following this order, they are taken one by one and assigned to the earliest workstation that has enough idle time. If all the tasks can be assigned, then the partial solution is repaired. Otherwise, if the tasks cannot be assigned, then the partial solution is eliminated.

The Algorithm

The algorithm generates several sets of solutions by using different combinations of priority rules and α values used in the probability function. Then, the best solution is selected. Figure 2 shows how a solution is generated by the algorithm. It works as follows: each time a station is opened, the thresh-old (T ) and M CL values for this station are computed using equations ( 7) and ( 8). Then, tasks are ordered and assigned to stations using the priority rule while respecting the model constraints (precedence and cycle time).

Each time a task is assigned to a station, the probability of closing the station is computed using ( 9), and the test of closing the station is performed as explained in section 3.1.

2. An open station is closed if the result of the test for closing is positive or it is not possible to assign any of the remaining tasks while respecting the model constraints. Each time a station is closed, the value of the objective function is updated, and a new station is opened.

The algorithm stops under one of the three following conditions:

• All stations are used and all tasks are assigned. In this case, the solution is considered feasible. This corresponds to the end instruction (1) in Figure 2.

• The last station (station no. K) is closed before the last task is assigned.

Then, the solution is considered infeasible, and a repair procedure is applied (section 3.1.3). Depending on the repair procedure's success, we obtain the end instruction (1) or (3) in Figure 2.

• All tasks are assigned while there is still one or more empty stations.

Then, the solution is considered as suboptimal [START_REF] Azizoglu | Workload smoothing in simple assembly line balancing[END_REF] and is eliminated. This corresponds to the end instruction (2) in Figure 2.

For a better understanding of the problem and the solution approach used in our algorithm, we refer readers to the numerical example detailed in Appendix B. 

Experimental Analysis

In this section, we perform an experimental design for defining the heuristic's parameters values. Then we conduct extensive experiments to demonstrate the efficiency of our heuristic.

Parameter selection

To select the best-performing combination of priority rule × value of α, we conduct pilot tests using 39 small-to medium-sized instances from https://assembly-line-balancing.de. Optimal values of the objective function for these instances, which contain between 30 to 53 tasks each, are known.

We perform experiments using the 21 priority rules in Appendix A along with the following values of α: 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; and 0.9. This results in 210 different combinations of priority rules and α values. Using each of these combinations, 1,000 solutions are generated by the algorithm for each one of the instances mentioned above. The best solution among the 1,000 is then selected, and the corresponding deviation from the optimal objective function value is computed. Appendix C shows the average deviation value out of the 39 instances for each combination. Using these results, we select the best-performing combinations: those that present an average deviation lower than 1.27%.

This yields 72 combinations to be definitely integrated in our algorithm.

Examining these 72 combinations, we observe that they include nine values of α: 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0. Note that these priority rules are part of well-known priority rules used to solve SALBP-1 and SALBP-2 problems. Previous research has shown that the performance of the priority rules might significantly depend on the structural characteristics of the problem instances [START_REF] Otto | How to design effective priority rules: Example of simple assembly line balancing[END_REF]. For our problem, we emphasize the interaction of the rules with the probability function characterized by the parameter α. Therefore, the results are presented for pairs (Rule × α) in Appendix C. From Appendix C, we observe that the rules that use network structure characteristics (CP , CF , P W * ) perform well in the pilot tests, independently of the value of α. Moreover, the best results are usually achieved with α = 0.4, 0.5, 0.6, 0.7. Therefore, the selected parameters reflect a balance of underloading and overloading and make use of the precedence network information. et al. (2013) suggest the use of instances with 100 tasks for testing heuristic algorithms and instances with 1,000 tasks for evaluating the capacity of algorithms to solve real-size problems. Following this recommendation, we conduct computational experiments using three sets of instances selected from https://assembly-line-balancing.de/.

Computational results

Otto

• We have 42 instances from [START_REF] Scholl | Balancing and Sequencing of Assembly Lines[END_REF]. This set comprises instances with 14 different values of n (from 21 to 297 tasks) and three different cycle times C for each value of n (the minimum, the median, and the maximum of the values reported in the source files). We solve each of the 42 instances using the following three values of the number of stations: the optimal value of the SALBP-1 problem K, K + 5%, and

K + 10%.
• Two sets of instances were selected randomly from [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing[END_REF].

This comprises:

-Twenty-five instances with n = 100 tasks; and

twenty-five instances with n = 1000 tasks.

This results in a total of 276 instances used for testing our algorithm.

For each instance of the first and second sets, 72,000 solutions are generated

(1,000 solutions using each of the 72 combinations of rules × values of α), among which the algorithm returns the best solution. As for instances of the third set, a larger number of solutions (720,000) are generated for each instance, and the best one is retained.

Tables 1,2, 3 and 4 summarize the results. For each instance, problem parameters, computation time, and the percentage deviation, if not the optimality gap2 , are presented. Based on a detailed analysis of the results, we summarize the findings as follows:

• Our algorithm returns solutions for a big majority of the instances (241 out of 276). Among 241 solutions, 190 have either a percentage deviation or an optimality gap less than 1%.

• Our algorithm is very efficient in finding good quality solutions for very large-sized instances (1,000 tasks) that correspond to real-life problems in a short time (Table 4 shows an average optimality gap of 0.81% and an average computational time of 184 seconds).

• Our algorithm finds very good solutions for medium-and large-sized instances very quickly, usually in less than one second (Tables 1, 2 and3).

• Regarding the instances for which the optimal value of the objective function is known, our results present an average deviation of 0.47% (ranging from 0% to 1.52%, see Table 1) from this value. For the other medium-and large-sized instances, we present low optimality gaps with an average of 0.68% (from 0.01% to 7.13%, see Table 2) and 0.80% (from 0.01% to 3.94%, see Table 3).

Examining the cases for which the heuristic did not return feasible solutions, we find that corresponding instances are characterized by high line efficiency and relatively complex precedence relations. This makes finding feasible solutions for these instances harder, especially that the parameter selection we performed was focused on producing high-quality solutions rather than simply feasible ones. Notice that these cases constitute a minority of 35 out of 276 instances. We further tried to solve these instances by implementing a constructive heuristic using the 21 priority rules without the probabilistic function. However, this did not work. 

Conclusion

We develop an efficient heuristic to solve the workload smoothing problem in simple assembly lines by investigating and integrating the problem-specific characteristics. To build our algorithm, we incorporate 21 priority rules traditionally used in line balancing problems and a probabilistic decisionmaking procedure specifically designed to achieve the smoothing objective.

To achieve the best integration strategy between the priority rules and the parameter of the probabilistic rule for closing stations α, we perform a comprehensive pilot test and select the best-performing combinations (rule × value of α). Based on this experimental design work, we select 72 combinations to be definitely integrated into our algorithm. These combinations result from nine values of α combined with eight priority rules as it could be seen in Appendix C.

We test the efficiency of our heuristic algorithm through an extensive computational experiment based on three data sets from [START_REF] Scholl | Balancing and Sequencing of Assembly Lines[END_REF] and [START_REF] Otto | Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing[END_REF]. Analysis of the test results demonstrates the efficiency of our heuristic in producing high-quality solutions for medium-sized to very large-sized instances (up to 1,000 tasks) in a very short time.

Though we obtain excellent results regarding our problem, this work has its limits and can be further developed by exploring new promising research directions:

• Further investigation can be done to increase the percentage of feasible solutions generated by the heuristic. This includes the analysis of special cases of the problem, such as those that require a very high-capacity utilization and involve complex network structures.

• Our solution approach might be adapted for solving type III problems in mixed-model lines.

• Lines with special flexibility and reconfigurability requirements can also be studied. In this regard, the study can be extended to develop heuristics for workload smoothing in U-type configurations.

• Multicriteria versions of the problem, such as a study of the line efficiency and/or robustness criteria in addition to the smoothing objective, can be explored.

10. As 0.6875 > 0.65, the decision is to close station 1.

11. Station 2 is opened, and the same process is applied through which tasks B, D and F are assigned to this station. Observe that P(close r) = (2 + 6 + 1) -0.6 × 9 12 -5.4 = 6 11 < 0.65. Thus, the decision resulting from the probabilistic rule (section 3.1.2) is not to close station 2. However, because none of the remaining tasks satisfy the constraints, station 2 is closed and station 3 is opened for assignment.

12. Following the same procedure, tasks E and G are assigned to station 3.

Using (6), the objective function value associated to this solution is Z = 10 2 + 9 2 + 9 2 = 262. Figure B.4 illustrates the feasible assignment of tasks to stations leading to this solution, wherein letters refer to the tasks, and numbers in parentheses refer to their processing times. Observe that:

• For the same combination of a priority rule and a α value, we may obtain different solutions simply if the random number generated in step 6 is different. That's why our algorithm generates a set of different solutions for each combination of a priority rule and a α value.

• Similarly, a different set of solutions can be obtained for any other combination of a priority rule and a α value. Appendix C. Results of Pilot Tests on 39 medium-sized instances, sorted by increasing average percentage deviations. 

  design a two-stage heuristic procedure for minimizing a flow index measured by the root of the mean squared deviation from the takt time. Mozdgir et al. (2013) use Taguchi method for optimizing the smoothness index (SI) introduced by Moodie and Young (1965) and measured by the sum of squared deviations of workstation loads from the cycle time. Finally, Finco et al. (2019) use a mixed integer linear programming-based (MILP-based) method and a heuristic approach to minimize the SI's square root.
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 1 Figure 1: Probability of closing a station as a function of its workload in [0, C].

Figure 2 :

 2 Figure 2: Flowchart of our heuristic procedure.

  7; and 0.8 combined with the following eight priority rules: (1) total number of followers (|F * |); (2) positional weight (P W * ); (3) latest station divided by number of followers (LdF ); (4) recursive cumulated positional weight (CP W ); (5) critical path (CP ); (6) longest path (LP ); (7) recursive cumulated edges (RE); and (8) cumulated number of followers (CF ).

Figure B. 3 :

 3 Figure B.3: Precedence network with processing times for the example in Appendix B.

Figure B. 4 :

 4 Figure B.4: A feasible solution obtained by our algorithm for the example in Appendix B.

Table 1 :

 1 Results of the problems for which optimal solutions are

		known. (Scholl, 1999)				
	Filename n C K time (s) % dev Filename n	C	K time (s) % dev
					Heskia	28 138 8	0.093	0.11
								9	0.094	0.55
	Mitchell 21 14 8	0.078	0.14			216 5	0.093	0.18
		9	0.062	0.32				6	0.078	0.70
		10	0.063	0.89				7	0.078	0.52
		21 5	0.577	0.00			342 3	1.249	0.00
		6	0.078	0.11				4	0.078	0.59
		7	0.062	1.52				5	0.078	0.18
		39 3	0.062	0.05	Buxey	29 27 13	0.109	0.74
		4	0.047	0.29				14	0.109	0.58
		5	0.062	0.63				15	0.094	0.94
	Roszieg	25 14 10	0.094	0.00			36 10	0.109	0.27
		11	0.094	0.14				11	0.094	0.73
		12	0.109	0.75				12	0.078	1.42
		18 8	0.078	0.51			54	7	0.093	0.55
		9	0.078	0.69				8	0.094	1.23
		10	0.078	0.13				9	0.078	0.87
		32 4	0.078	0.00	Tonge70 70 234 16	0.234	0.10
		5	0.062	0.70				17	0.234	0.27
		6	0.078	0.08				18	0.219	0.27

Table 2 :

 2 Results of the medium and large size problems for which

		optimal solutions are not known. (Scholl, 1999)
					optimality		optimality
	Filename n	C K time (s) gap (%) Filename n	C K time (s) gap (%)
	Heskia	28 138 10 0.094	2.01		56 30 0.391	0.77
							32 0.328	0.49
							34 0.328	1.97
	Warnecke 58 54 31	-	-	Arc83	83 3786 21 0.359	0.29
			33 0.328	1.26		23 0.344	0.50
			35 0.297	1.74		25 0.313	0.71
			71 23	-	-		5824 14 0.265	0.09
			25 0.250	0.69		15 0.250	0.19
			27 0.235	1.04		16 0.234	0.37
			111 14	-	-		10816 8 0.234	0.08
			15 0.187	0.15		9 0.219	0.04
			16 0.188	0.60		10 0.219	0.20
	Tonge70 70 160 23 0.296	0.10	Lutz2	89 11 49	-	-
			25 0.266	0.48		52 0.672	1.76
			27 0.265	1.09		55 0.625	1.73
			527 7 0.203	0.05		16 31	-	-
			8 0.188	0.34		33 0.438	0.77
			9 0.172	0.29		35 0.437	1.55
	Wee-mag 75 28 63 0.499	0.57		21 24	-	-
			67 0.438	2.48		26 0.375	0.55
			71 0.422	7.13		28 0.375	1.05
			39 60 0.718	1.66	Lutz3	89 75 23	-	-
			63 0.703	1.21		25 0.359	0.29
			67 0.672	2.84		27 0.344	0.68
							Continued on next page

Table 2 -

 2 Continued from previous page

					optimality		optimality
	Filename n	C K time (s) gap (%) Filename n	C K time (s) gap (%)
			97 18	-	-		17067 9 0.374	0.01
			19 0.328	0.27		10 0.328	0.16
			20 1.000	0.47		11 0.329	0.23
			150 12 0.296	0.30	Barthol2 148 84 51	-	-
			13 0.281	0.25		54 0.891	0.24
			14 0.297	0.28		57 0.812	0.53
	Mukherje 94 176 25 0.437	0.15		112 38	-	-
			27 0.406	0.47		40 0.719	0.12
			29 0.390	1.07		42 0.671	0.32
			234 19 0.375	0.14		170 25	-	-
			20 0.359	0.41		27 0.578	0.09
			21 0.344	0.68		29 0.531	0.24
			351 13 0.328	0.09	Scholl	297 1394 51 1.265	0.03
			14 0.313	0.29		54 1.156	0.17
			15 0.312	0.54		57 1.109	0.34
	Arc111	111 5755 27 0.515	0.19		1834 38	-	-
			29 0.515	0.45		40 1.077	0.12
			31 0.485	1.20		42 1.031	0.16
			7916 20 0.453	0.03		2787 25	-	-
			21 0.437	0.13		27 0.953	0.07
			23 0.422	0.96		29 0.906	0.14

Table 3 :

 3 Results of the Large Size Problems with n = 100 tasks

		and C = 1000. (Otto et al., 2013)				
			optimality			optimality			optimality
	#file K time (s) gap (%) #file K time (s) gap (%) #file K time (s) gap (%)
	38 14 0.328	0.03	252 14 0.329	0.02	412 14 0.359	0.02
	15 0.297	0.20	15 0.328	0.10	15 0.343	0.18
	16 0.297	0.32	16 0.328	0.14	16 0.344	0.27
	61 54	-	-	325 25	-	-	438 57 0.734	2.19
	57	-	-	27 0.422	0.29	60 0.703	2.76
	60 0.640	2.85	29 0.375	0.66	63 0.687	3.24
	77 20 0.438	0.02	332 14 0.359	0.02	452 22	-	-
	21 0.406	0.07	15 0.313	0.12	24 0.406	0.32
	23 0.375	0.61	16 0.312	0.23	26 0.391	1.01
	107 14 0.360	0.05	348 14 0.328	0.07	464 25 0.453	0.20
	15 0.343	0.26	15 0.312	0.12	27 0.469	0.30
	16 0.328	0.29	16 0.297	0.27	29 0.453	0.82
	108 14	-	-	349 13 0.344	0.06	481 15	-	-
	15 0.390	0.10	14 0.312	0.10	16 0.390	0.14
	16 0.375	0.20	15 0.313	0.28	17 0.375	0.43
	114 13 0.359	0.01	361 52	-	-	496 14 0.406	0.07
	14 0.344	0.12	55 0.656	1.76	15 0.406	0.17
	15 0.312	0.26	58 0.625	2.60	16 0.391	0.23
	209 56	-	-	389 23 0.453	0.07	514 60 1.093	3.27
	59 0.656	3.44	25 0.422	0.26	63 1.062	3.48
	62 0.625	3.62	27 0.421	0.68	67 1.016	3.94
	218 56	-	-	399 23 0.422	0.03		
	59 0.719	2.64	25 0.391	0.25		
	62 0.687	3.48	27 0.375	0.71		
	244 21 0.391	0.08	400 24	-	-		
	23 0.391	0.30	26 0.453	0.14		
	25 0.359	0.46	28 0.406	0.62		

Table 4 :

 4 Results of the Very Large Size Problems with n = 1000

		tasks and C = 1000. (Otto et al., 2013)			
			optimality		optimality			optimality
	#file K time (s) gap (%) #file K time (s) gap (%) #file K time (s) gap (%)
	11 134	-	-	168 138	-	-	406 542 374.967	1.35
	141 68.423	0.08	145 58.487	0.09	570 353.621	2.08
	149 57.613	0.17	153 51.816	0.23	599 332.064	2.79
	32 527 317.817	0.77	205 231 122.862	0.01	453 138	-	-
	554 350.887	1.51	243 85.011	0.11	145 126.487	0.09
	582 333.755	2.29	256 74.186	0.38	153 120.378	0.27
	59 224 124.535	0.01	279 218 147.918	0.02	468 138	-	-
	236 99.478	0.14	229 72.452	0.12	145 117.785	0.12
	248 81.091	0.42	241 66.656	0.39	153 114.459	0.30
	60 232 120.925	0.01	317 136	-	-	475 136	-	-
	244 97.665	0.13	143 67.937	0.09	143 119.738	0.08
	257 79.935	0.39	151 58.721	0.25	151 116.410	0.24
	89 140	-	-	359 224 116.239	0.01	487 597 619.822	2.79
	147 66.565	0.10	236 94.572	0.12	627 605.187	3.16
	155 57.941	0.24	248 79.294	0.39	659 578.600	3.72
	95 136	-	-	364 222	-	-	489 578 586.677	2.51
	143 63.548	0.10	234 95.431	0.13	607 562.337	2.88
	151 54.847	0.27	246 79.716	0.37	638 543.811	3.45
	101 550 299.492	1.65	375 229 120.331	0.01	519 226	-	-
	578 276.716	2.05	241 96.993	0.13	238 149.059	0.18
	607 260.610	2.69	254 81.138	0.40	250 143.591	0.45
	136 230	-	-	394 138	-	-		
	242 86.682	0.14	145 61.876	0.06		
	255 75.326	0.38	153 55.691	0.22		
	144 220 98.024	0.01	403 557 402.442	1.68		
	231 78.997	0.14	585 380.226	2.40		
	243 68.390	0.40	615 361.339	3.06		

See Appendix A for the list of all priority rules used here.

If the optimal solution is known, the deviation from it is reported. Otherwise, we report the optimality gap measured by the percentage deviation from the lower bound.

Appendix A. Priority rules [START_REF] Otto | How to design effective priority rules: Example of simple assembly line balancing[END_REF] T : Task time As mentioned in section 3.1, our algorithm generates several sets of solutions using predetermined combinations of priority rules and values of the parameter α. In this example, we use Longest Task Time and α = 0.6 and explain how our algorithm builds a solution:

1. The order of the tasks according to the priority rule is: (C, D, E, G, A, B, andF).

2. Using formula ( 7) and ( 8), the threshold for station 1 is

, and the minimum closing load value in this station is M CL 1 = αT 1 = 0.6 × 28 3 = 5.6.

3. The set of eligible tasks is {A, B}.

4. Task A is assigned to station 1 as it has the highest priority.

5. To decide whether the station should be closed or not, we use (9) to compute the value P(close r). Here P(close r) = 0 since w 1 = 3 < 5.6 = M CL 1 .

6. A random uniform number is generated in [0, 1] to be used for making the decision of closing the stations after each assignment. The number we obtain is 0.65.

7. As 0 < 0.65, we decide to keep station 1 open and continue loading it.

8. The set of eligible tasks is updated, and the task with the highest priority in this set (task C) is identified and assigned. 9. As in step 5, we compute the new value of P(close r) and find P(close r) = (3 + 7) -5.6 12 -5.6 = 0.6875.