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Abstract

Workload smoothing on assembly lines, which aims to evenly assign tasks

to stations, supports workforce planning and resource optimization. In this

paper, we study smoothing assembly lines and develop a problem-specific

heuristic to efficiently solve large-sized instances. To build solutions, the al-

gorithm uses a number of well-known priority rules for task assignment in

conjunction with a probabilistic decision-making procedure for closing work-

stations. We next conduct an experimental design to select the best perform-

ing priority rules and tuning of the probabilistic decision-making procedure.

The efficiency of our algorithm is tested and demonstrated through an ex-

tensive experimental study.
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1. Introduction

Assembly lines (AL) have been traditionally used since decades in many

industries such as automotive and electronics, as they enable mass produc-

tion of standardized products efficiently. These systems are composed of se-

rially located workstations where workers continuously perform operations.

Designing and balancing different line configurations and optimizing their

capacity usage have been taking the attention of the researchers and a vast

literature has already developed in this field. The related studies can be clas-

sified according to the number of product models assembled: simple assembly

line balancing problem (SALBP), mixed assembly line balancing problem

(MALBP), and multi-model assembly line balancing problem (MMALBP)

lines. Simple lines produce one homogeneous product and require similar

production processes for all the production. In mixed-model lines, several

versions of the same product are assembled. In multi-model assembly lines,

production processes might differ significantly and require additional set-ups

(Scholl, 1999). In addition to the above classification, assembly line balancing

problems can be classified according to the problem objective (Boysen et al.,

2008; Battäıa and Dolgui, 2013). Minimizing the number of stations or the

cycle time (respectively, type I and type II problems) are the most common

objectives in the existing literature. In this research, we focus on simple lines

and deal with the workload smoothing problem, which is referred to as the

type III problem (Uğurdağ et al., 1997; Eswaramoorthi et al., 2012).

Workload smoothing, that consists of evenly assigning tasks to stations

(Moodie and Young, 1965), has several benefits. It makes workforce and pay-

roll planning easier and improves resource utilization. It also helps reduce
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ergonomic risks and minimizes worker fatigue and accidents that could be

caused by disproportionate workloads (Otto and Scholl, 2011; Groover, 2013;

Finco et al., 2019). We refer to Groover (2013) for a discussion about the

use of smoothing to improve general workstation design. Moreover, work-

load smoothing enhances work equity by dividing the work fairly among the

workers (Rachamadugu and Talbot, 1991), and it has been found that in

mixed-model assembly lines, smoothing reduces short-term work overloads

(Emde et al., 2010). Despite all these important benefits in practice, re-

search on workload smoothing, the type III problem, is scant compared to

other problem types.

In the literature, both exact and heuristic approaches have been imple-

mented for solving smoothing problems by using different objective functions.

Pinnoi and Wilhelm (1997) use a branch & cut method to minimize the max-

imum idle time for a specified number of stations, and Azizoğlu and İmat

(2018) employ a branch & bound algorithm to minimize the sum of squared

workstations loads. Walter (2020) corrects the lower bound of Azizoğlu and

İmat (2018) and proposes a tighter formulation. These exact method-based

works emphasize the high complexity of the problem and the difficulty of

solving it, as only small-sized instances which contain up to 30 tasks are

solved to optimality.

Larger-sized instances (up to 148 tasks) are solved using heuristic meth-

ods, which are mainly metaheuristics. Kim et al. (1996) use genetic algo-

rithms to minimize the mean squared deviation from the mean workstation

load. Further, using the same method, Kim et al. (1998) minimize the mean

absolute deviation (MAD), which measures the station loads’ deviations from
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the mean workload. Uğurdağ et al. (1997) focus on solving the type II prob-

lem; however, the second stage of their algorithm minimizes workload vari-

ance as a secondary objective. Nearchou (2011) addresses a bi-criteria prob-

lem with minimization of the cycle time and MAD using a particle swarm

optimization-based method. Eswaramoorthi et al. (2012) design a two-stage

heuristic procedure for minimizing a flow index measured by the root of the

mean squared deviation from the takt time. Mozdgir et al. (2013) use Taguchi

method for optimizing the smoothness index (SI) introduced by Moodie and

Young (1965) and measured by the sum of squared deviations of workstation

loads from the cycle time. Finally, Finco et al. (2019) use a mixed integer

linear programming-based (MILP-based) method and a heuristic approach

to minimize the SI’s square root.

In this study, we develop a problem-specific heuristic procedure that

solves large-sized instances (up to 1,000 tasks) efficiently. Our algorithm’s

efficiency is mainly due to the use of a new probabilistic rule for closing sta-

tions, that is specifically designed to achieve the smoothing objective. It is

also enhanced by a thorough experimental design we conduct for selecting

the best-performing combinations of priority rules used for task assignment

and parameter values of the probabilistic rule used for closing stations.

Developing efficient heuristics contributes both to the practice and the-

ory. Relatively efficient heuristics support practitioners in quickly generating

reliable solutions and evaluating several alternatives. In addition, they can

enhance the efficiency of several optimization methods, such as the branch

and bound algorithms (Otto and Otto, 2014). The efficiency of our heuristic

is demonstrated through extensive computational experiments that we real-
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ize using well-known benchmark data sets from Scholl (1999) and Otto et al.

(2013). At this point, we refer to the experimental analysis and comparison

studies of Amen (2000), Pape (2015), Li et al. (2017a) and Li et al. (2017b)

on heuristic algorithms for solving other line balancing problems.

The remainder of this paper is organized as follows. First, we present

a formal definition and a mathematical model of the problem in section

2. Then, we build the solution algorithm and explain its components in

section 3. Later, in section 4, we present the experimental analysis and

computational results. Finally, conclusions and directions for future research

are given in Section 5.

2. Problem Definition

We consider a simple assembly line in which a fixed number of tasks, (n),

are undertaken on a given number of workstations, (K). Tasks are assigned

to the stations so that a product could be assembled within a given cycle

time, (C). In addition, precedence constraints, which define the processing

order of the tasks, should be respected. A graph, G = (N,A) where N is

the set of nodes and A ⊆ N ×N is the set of arcs represents these temporal

relations. The objective is to balance the workloads on the K stations,

formally, to minimize the sum of squared differences between stations’ times

and the cycle time (C). Any task (i) can be characterized by ti, Pi, and

Fi, which are, respectively, the task time, the set of its direct predecessors,

and the set of its direct followers. Let wk be the load of station k and xik,

a decision variable that takes the value 1 when operation i is assigned to

station k, the mathematical formulation of our problem is given as follows:
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Min
K∑
k=1

(C − wk)2 (1)

subject to

K∑
k=1

xik = 1, for i = 1, . . . , n (2)

K∑
k=1

kxik ≤
K∑
k=1

kxjk, ∀(i, j) ∈ A (3)

wk =
n∑

i=1

ti(xik) ≤ C, for k = 1, . . . , K (4)

xik ∈ {0, 1} ∀i, k. (5)

(1) represents the objective function. Equations (2) ensure that a unique

station is assigned to each operation. Inequalities (3) and (4) represent,

respectively, the precedence and cycle time constraints. This problem has

shown to be strongly NP hard (Azizoğlu and İmat, 2018).

Note that the objective function in (1) corresponds to what is usually

called the workload smoothness index (Scholl and Becker, 2006; Mozdgir

et al., 2013). Azizoğlu and İmat (2018) show that minimizing this objective

function is equivalent to minimizing the sum of the squares of the total

workstations loads:

Z =
K∑
k=1

w2
k (6)
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Hereafter, we address minimizing this function. To solve this problem,

we develop a heuristic.

3. Solution Approach and the Algorithm

In this section, we first introduce the solution approach that incorpo-

rates specific characteristics of the smoothing problem. Then, we present the

algorithm that we have built based on the solution approach.

3.1. Solution Approach

To solve the problem, we build a multi-pass heuristic algorithm that uses

several priority rules for assigning tasks to workstations combined with a

probabilistic rule for closing the station. Using different priority rules helps

generate alternative solutions. In addition, by employing a probabilistic rule,

a different set of solutions is generated each time the algorithm is run.

3.1.1. Priority rules

We use a priority rule for choosing a task among several eligible tasks that

all respect the precedence relationships. For this purpose, 21 priority rules

listed in Otto and Otto (2014)1 are tested, out of which 8 rules are definitely

integrated in the algorithm based on the experimental design performed in

section 4.1.

3.1.2. Probabilistic rule for closing workstations

As the overall objective of our work is to smooth the stations’ workloads,

it is obvious that it might not be optimal to fully use the station’s capacity.

1See Appendix A for the list of all priority rules used here.
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Indeed, even in cases where a workstation has enough idle time that could

be used for assigning one or more remaining tasks, it might not be optimal

to assign any of them to this workstation. Instead, achieving the smoothing

objective might require closing the workstation and immediately opening

the next one. Considering this problem-specific characteristic, we develop a

probabilistic decision-making rule for closing workstations that aims to evenly

distribute the workload among stations. This rule is based on a threshold

value (T ) of the workload specific to each workstation, that is equal to the

average load on the currently open workstation and those which are still to

be opened for task assignment. Formally, assuming that r is the currently

open workstation, then, a load of
∑n

i=1 ti −
∑r−1

k=1wk time units is still to be

assigned to this workstation and the remaining K − r ones. Therefore, the

threshold of station r that we denote by Tr is expressed as follows:

Tr =

(∑n
i=1 ti −

∑r−1
k=1wk

)
K − r + 1

(7)

Observe that Tr represents the ideal load of the current workstation r

with regards to the smoothing objective. However, given the indivisibility of

tasks, there is no guarantee that it will be possible to reach Tr on workstation

r. Therefore, it is useful to have a rule that allows for closing the station

once its workload reaches a value around Tr. For this purpose, we define a

minimum closing load (MCL) for the workstation r based on the threshold

value of this station Tr in conjunction with the probability function for closing

the workstation as follows:

MCLr = αTr (8)
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Figure 1: Probability of closing a station as a function of its workload in [0, C].

P(close r) =


0 if 0 ≤ wr ≤MCLr

wr −MCLr

C −MCLr

if MCLr < wr ≤ C
(9)

Figure 1 shows the behavior of this probability function. Observe that our

rule respects the workstation’s capacity constraint as it imposes the decision

of closing the workstation once the cycle time is reached. On the other hand,

this rule prevents from closing the workstation before the MCL is reached.

We also note that the value of the coefficient α has a key role for deter-

mining when to close the workstation. Small values of α allow for closing

the workstation at relatively low loads and result in a slow increase of the

probability of closing the workstation following the assignment of tasks. On

the other hand, higher values of α prevent from closing the workstation early

and result in a quick increase of the probability of closing the workstation

following the assignment of tasks. Hence, small values of α might lead to

underutilization of stations capacity, so that the algorithm would end with
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all stations being closed while there are still unassigned tasks. To deal with

this issue, we integrate a repair procedure to the algorithm.

Alternatively, with higher values of α, there is a risk of poor quality solu-

tions characterized by first workstations being overloaded while subsequent

ones are underloaded. Considering these aspects, we make a comprehensive

experimental design to choose the best performing values of α that allow

for balancing the risks of underloading and overloading workstations. The

implementation of this experimental design is detailed in section 4.1.

3.1.3. Repair Procedure

It is obvious that the solution approach developed above could result in

infeasible solutions. Specifically, partial solutions could occur in which all

workstations are closed while some tasks remain unassigned. In this case,

a repair procedure is applied. This repair procedure uses a constructive al-

gorithm and works as follows: the remaining unassigned tasks are ordered

considering the precedence constraints and the current priority rule. Fol-

lowing this order, they are taken one by one and assigned to the earliest

workstation that has enough idle time. If all the tasks can be assigned, then

the partial solution is repaired. Otherwise, if the tasks cannot be assigned,

then the partial solution is eliminated.

3.2. The Algorithm

The algorithm generates several sets of solutions by using different combi-

nations of priority rules and α values used in the probability function. Then,

the best solution is selected. Figure 2 shows how a solution is generated by

the algorithm. It works as follows: each time a station is opened, the thresh-
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old (T ) and MCL values for this station are computed using equations (7)

and (8). Then, tasks are ordered and assigned to stations using the prior-

ity rule while respecting the model constraints (precedence and cycle time).

Each time a task is assigned to a station, the probability of closing the sta-

tion is computed using (9), and the test of closing the station is performed

as explained in section 3.1.2. An open station is closed if the result of the

test for closing is positive or it is not possible to assign any of the remaining

tasks while respecting the model constraints. Each time a station is closed,

the value of the objective function is updated, and a new station is opened.

The algorithm stops under one of the three following conditions:

• All stations are used and all tasks are assigned. In this case, the solution

is considered feasible. This corresponds to the end instruction (1) in

Figure 2.

• The last station (station no. K) is closed before the last task is assigned.

Then, the solution is considered infeasible, and a repair procedure is

applied (section 3.1.3). Depending on the repair procedure’s success,

we obtain the end instruction (1) or (3) in Figure 2.

• All tasks are assigned while there is still one or more empty stations.

Then, the solution is considered as suboptimal (Azizoğlu and İmat,

2018) and is eliminated. This corresponds to the end instruction (2) in

Figure 2.

For a better understanding of the problem and the solution approach

used in our algorithm, we refer readers to the numerical example detailed in

Appendix B.
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Figure 2: Flowchart of our heuristic procedure.
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4. Experimental Analysis

In this section, we perform an experimental design for defining the heuris-

tic’s parameters values. Then we conduct extensive experiments to demon-

strate the efficiency of our heuristic.

4.1. Parameter selection

To select the best-performing combination of priority rule × value of

α, we conduct pilot tests using 39 small- to medium-sized instances from

https://assembly-line-balancing.de. Optimal values of the objective function

for these instances, which contain between 30 to 53 tasks each, are known.

We perform experiments using the 21 priority rules in Appendix A along with

the following values of α: 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; and 0.9. This

results in 210 different combinations of priority rules and α values. Using each

of these combinations, 1,000 solutions are generated by the algorithm for each

one of the instances mentioned above. The best solution among the 1,000

is then selected, and the corresponding deviation from the optimal objective

function value is computed. Appendix C shows the average deviation value

out of the 39 instances for each combination. Using these results, we select

the best-performing combinations: those that present an average deviation

lower than 1.27%.

This yields 72 combinations to be definitely integrated in our algorithm.

Examining these 72 combinations, we observe that they include nine values

of α: 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; and 0.8 combined with the following

eight priority rules: (1) total number of followers (|F ∗|); (2) positional weight

(PW ∗); (3) latest station divided by number of followers (LdF ); (4) recursive
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cumulated positional weight (CPW ); (5) critical path (CP ); (6) longest path

(LP ); (7) recursive cumulated edges (RE); and (8) cumulated number of

followers (CF ).

Note that these priority rules are part of well-known priority rules used to

solve SALBP-1 and SALBP-2 problems. Previous research has shown that

the performance of the priority rules might significantly depend on the struc-

tural characteristics of the problem instances (Otto and Otto, 2014). For our

problem, we emphasize the interaction of the rules with the probability func-

tion characterized by the parameter α. Therefore, the results are presented

for pairs (Rule × α) in Appendix C. From Appendix C, we observe that

the rules that use network structure characteristics (CP , CF , PW ∗) perform

well in the pilot tests, independently of the value of α. Moreover, the best

results are usually achieved with α = 0.4, 0.5, 0.6, 0.7. Therefore, the selected

parameters reflect a balance of underloading and overloading and make use

of the precedence network information.

4.2. Computational results

Otto et al. (2013) suggest the use of instances with 100 tasks for testing

heuristic algorithms and instances with 1,000 tasks for evaluating the capac-

ity of algorithms to solve real-size problems. Following this recommendation,

we conduct computational experiments using three sets of instances selected

from https://assembly-line-balancing.de/.

• We have 42 instances from Scholl (1999). This set comprises instances

with 14 different values of n (from 21 to 297 tasks) and three different

cycle times C for each value of n (the minimum, the median, and the
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maximum of the values reported in the source files). We solve each

of the 42 instances using the following three values of the number of

stations: the optimal value of the SALBP-1 problem K, K + 5%, and

K + 10%.

• Two sets of instances were selected randomly from Otto et al. (2013).

This comprises:

– Twenty-five instances with n = 100 tasks; and

– twenty-five instances with n = 1000 tasks.

This results in a total of 276 instances used for testing our algorithm.

For each instance of the first and second sets, 72,000 solutions are generated

(1,000 solutions using each of the 72 combinations of rules × values of α),

among which the algorithm returns the best solution. As for instances of

the third set, a larger number of solutions (720,000) are generated for each

instance, and the best one is retained.

Tables 1, 2, 3 and 4 summarize the results. For each instance, problem

parameters, computation time, and the percentage deviation, if not the op-

timality gap2, are presented. Based on a detailed analysis of the results, we

summarize the findings as follows:

• Our algorithm returns solutions for a big majority of the instances

(241 out of 276). Among 241 solutions, 190 have either a percentage

deviation or an optimality gap less than 1%.

2If the optimal solution is known, the deviation from it is reported. Otherwise, we
report the optimality gap measured by the percentage deviation from the lower bound.
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• Our algorithm is very efficient in finding good quality solutions for very

large-sized instances (1,000 tasks) that correspond to real-life problems

in a short time (Table 4 shows an average optimality gap of 0.81% and

an average computational time of 184 seconds).

• Our algorithm finds very good solutions for medium- and large-sized

instances very quickly, usually in less than one second (Tables 1, 2 and

3).

• Regarding the instances for which the optimal value of the objective

function is known, our results present an average deviation of 0.47%

(ranging from 0% to 1.52%, see Table 1) from this value. For the other

medium- and large-sized instances, we present low optimality gaps with

an average of 0.68% (from 0.01% to 7.13%, see Table 2) and 0.80% (from

0.01% to 3.94%, see Table 3).

Examining the cases for which the heuristic did not return feasible so-

lutions, we find that corresponding instances are characterized by high line

efficiency and relatively complex precedence relations. This makes finding

feasible solutions for these instances harder, especially that the parameter se-

lection we performed was focused on producing high-quality solutions rather

than simply feasible ones. Notice that these cases constitute a minority of

35 out of 276 instances. We further tried to solve these instances by im-

plementing a constructive heuristic using the 21 priority rules without the

probabilistic function. However, this did not work.
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Table 1: Results of the problems for which optimal solutions are

known. (Scholl, 1999)

Filename n C K time (s) % dev Filename n C K time (s) % dev

Heskia 28 138 8 0.093 0.11

9 0.094 0.55

Mitchell 21 14 8 0.078 0.14 216 5 0.093 0.18

9 0.062 0.32 6 0.078 0.70

10 0.063 0.89 7 0.078 0.52

21 5 0.577 0.00 342 3 1.249 0.00

6 0.078 0.11 4 0.078 0.59

7 0.062 1.52 5 0.078 0.18

39 3 0.062 0.05 Buxey 29 27 13 0.109 0.74

4 0.047 0.29 14 0.109 0.58

5 0.062 0.63 15 0.094 0.94

Roszieg 25 14 10 0.094 0.00 36 10 0.109 0.27

11 0.094 0.14 11 0.094 0.73

12 0.109 0.75 12 0.078 1.42

18 8 0.078 0.51 54 7 0.093 0.55

9 0.078 0.69 8 0.094 1.23

10 0.078 0.13 9 0.078 0.87

32 4 0.078 0.00 Tonge70 70 234 16 0.234 0.10

5 0.062 0.70 17 0.234 0.27

6 0.078 0.08 18 0.219 0.27
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Table 2: Results of the medium and large size problems for which

optimal solutions are not known. (Scholl, 1999)

optimality optimality

Filename n C K time (s) gap (%) Filename n C K time (s) gap (%)

Heskia 28 138 10 0.094 2.01 56 30 0.391 0.77

32 0.328 0.49

34 0.328 1.97

Warnecke 58 54 31 - - Arc83 83 3786 21 0.359 0.29

33 0.328 1.26 23 0.344 0.50

35 0.297 1.74 25 0.313 0.71

71 23 - - 5824 14 0.265 0.09

25 0.250 0.69 15 0.250 0.19

27 0.235 1.04 16 0.234 0.37

111 14 - - 10816 8 0.234 0.08

15 0.187 0.15 9 0.219 0.04

16 0.188 0.60 10 0.219 0.20

Tonge70 70 160 23 0.296 0.10 Lutz2 89 11 49 - -

25 0.266 0.48 52 0.672 1.76

27 0.265 1.09 55 0.625 1.73

527 7 0.203 0.05 16 31 - -

8 0.188 0.34 33 0.438 0.77

9 0.172 0.29 35 0.437 1.55

Wee-mag 75 28 63 0.499 0.57 21 24 - -

67 0.438 2.48 26 0.375 0.55

71 0.422 7.13 28 0.375 1.05

39 60 0.718 1.66 Lutz3 89 75 23 - -

63 0.703 1.21 25 0.359 0.29

67 0.672 2.84 27 0.344 0.68

Continued on next page
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Table 2 – Continued from previous page

optimality optimality

Filename n C K time (s) gap (%) Filename n C K time (s) gap (%)

97 18 - - 17067 9 0.374 0.01

19 0.328 0.27 10 0.328 0.16

20 1.000 0.47 11 0.329 0.23

150 12 0.296 0.30 Barthol2 148 84 51 - -

13 0.281 0.25 54 0.891 0.24

14 0.297 0.28 57 0.812 0.53

Mukherje 94 176 25 0.437 0.15 112 38 - -

27 0.406 0.47 40 0.719 0.12

29 0.390 1.07 42 0.671 0.32

234 19 0.375 0.14 170 25 - -

20 0.359 0.41 27 0.578 0.09

21 0.344 0.68 29 0.531 0.24

351 13 0.328 0.09 Scholl 297 1394 51 1.265 0.03

14 0.313 0.29 54 1.156 0.17

15 0.312 0.54 57 1.109 0.34

Arc111 111 5755 27 0.515 0.19 1834 38 - -

29 0.515 0.45 40 1.077 0.12

31 0.485 1.20 42 1.031 0.16

7916 20 0.453 0.03 2787 25 - -

21 0.437 0.13 27 0.953 0.07

23 0.422 0.96 29 0.906 0.14
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Table 3: Results of the Large Size Problems with n = 100 tasks

and C = 1000. (Otto et al., 2013)

optimality optimality optimality

#file K time (s) gap (%) #file K time (s) gap (%) #file K time (s) gap (%)

38 14 0.328 0.03 252 14 0.329 0.02 412 14 0.359 0.02

15 0.297 0.20 15 0.328 0.10 15 0.343 0.18

16 0.297 0.32 16 0.328 0.14 16 0.344 0.27

61 54 - - 325 25 - - 438 57 0.734 2.19

57 - - 27 0.422 0.29 60 0.703 2.76

60 0.640 2.85 29 0.375 0.66 63 0.687 3.24

77 20 0.438 0.02 332 14 0.359 0.02 452 22 - -

21 0.406 0.07 15 0.313 0.12 24 0.406 0.32

23 0.375 0.61 16 0.312 0.23 26 0.391 1.01

107 14 0.360 0.05 348 14 0.328 0.07 464 25 0.453 0.20

15 0.343 0.26 15 0.312 0.12 27 0.469 0.30

16 0.328 0.29 16 0.297 0.27 29 0.453 0.82

108 14 - - 349 13 0.344 0.06 481 15 - -

15 0.390 0.10 14 0.312 0.10 16 0.390 0.14

16 0.375 0.20 15 0.313 0.28 17 0.375 0.43

114 13 0.359 0.01 361 52 - - 496 14 0.406 0.07

14 0.344 0.12 55 0.656 1.76 15 0.406 0.17

15 0.312 0.26 58 0.625 2.60 16 0.391 0.23

209 56 - - 389 23 0.453 0.07 514 60 1.093 3.27

59 0.656 3.44 25 0.422 0.26 63 1.062 3.48

62 0.625 3.62 27 0.421 0.68 67 1.016 3.94

218 56 - - 399 23 0.422 0.03

59 0.719 2.64 25 0.391 0.25

62 0.687 3.48 27 0.375 0.71

244 21 0.391 0.08 400 24 - -

23 0.391 0.30 26 0.453 0.14

25 0.359 0.46 28 0.406 0.62
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Table 4: Results of the Very Large Size Problems with n = 1000

tasks and C = 1000. (Otto et al., 2013)

optimality optimality optimality

#file K time (s) gap (%) #file K time (s) gap (%) #file K time (s) gap (%)

11 134 - - 168 138 - - 406 542 374.967 1.35

141 68.423 0.08 145 58.487 0.09 570 353.621 2.08

149 57.613 0.17 153 51.816 0.23 599 332.064 2.79

32 527 317.817 0.77 205 231 122.862 0.01 453 138 - -

554 350.887 1.51 243 85.011 0.11 145 126.487 0.09

582 333.755 2.29 256 74.186 0.38 153 120.378 0.27

59 224 124.535 0.01 279 218 147.918 0.02 468 138 - -

236 99.478 0.14 229 72.452 0.12 145 117.785 0.12

248 81.091 0.42 241 66.656 0.39 153 114.459 0.30

60 232 120.925 0.01 317 136 - - 475 136 - -

244 97.665 0.13 143 67.937 0.09 143 119.738 0.08

257 79.935 0.39 151 58.721 0.25 151 116.410 0.24

89 140 - - 359 224 116.239 0.01 487 597 619.822 2.79

147 66.565 0.10 236 94.572 0.12 627 605.187 3.16

155 57.941 0.24 248 79.294 0.39 659 578.600 3.72

95 136 - - 364 222 - - 489 578 586.677 2.51

143 63.548 0.10 234 95.431 0.13 607 562.337 2.88

151 54.847 0.27 246 79.716 0.37 638 543.811 3.45

101 550 299.492 1.65 375 229 120.331 0.01 519 226 - -

578 276.716 2.05 241 96.993 0.13 238 149.059 0.18

607 260.610 2.69 254 81.138 0.40 250 143.591 0.45

136 230 - - 394 138 - -

242 86.682 0.14 145 61.876 0.06

255 75.326 0.38 153 55.691 0.22

144 220 98.024 0.01 403 557 402.442 1.68

231 78.997 0.14 585 380.226 2.40

243 68.390 0.40 615 361.339 3.06
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5. Conclusion

We develop an efficient heuristic to solve the workload smoothing problem

in simple assembly lines by investigating and integrating the problem-specific

characteristics. To build our algorithm, we incorporate 21 priority rules

traditionally used in line balancing problems and a probabilistic decision-

making procedure specifically designed to achieve the smoothing objective.

To achieve the best integration strategy between the priority rules and the

parameter of the probabilistic rule for closing stations α, we perform a com-

prehensive pilot test and select the best-performing combinations (rule ×
value of α). Based on this experimental design work, we select 72 combi-

nations to be definitely integrated into our algorithm. These combinations

result from nine values of α combined with eight priority rules as it could be

seen in Appendix C.

We test the efficiency of our heuristic algorithm through an extensive

computational experiment based on three data sets from Scholl (1999) and

Otto et al. (2013). Analysis of the test results demonstrates the efficiency

of our heuristic in producing high-quality solutions for medium-sized to very

large-sized instances (up to 1,000 tasks) in a very short time.

Though we obtain excellent results regarding our problem, this work has

its limits and can be further developed by exploring new promising research

directions:

• Further investigation can be done to increase the percentage of feasible

solutions generated by the heuristic. This includes the analysis of spe-

cial cases of the problem, such as those that require a very high-capacity

utilization and involve complex network structures.

• Our solution approach might be adapted for solving type III problems
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in mixed-model lines.

• Lines with special flexibility and reconfigurability requirements can also

be studied. In this regard, the study can be extended to develop heuris-

tics for workload smoothing in U-type configurations.

• Multicriteria versions of the problem, such as a study of the line effi-

ciency and/or robustness criteria in addition to the smoothing objec-

tive, can be explored.
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Appendix A. Priority rules (Otto and Otto, 2014)

T : Task time

TdS: Task time divided by slack

TdL: Task time divided by latest station

PW ∗: Positional weight

PW : Positional weight based on direct followers

APW : Average ranked positional weight

PW v: Positional weight based on available followers

CPW : Recursive cumulated positional weight

CP : Critical path - maximum path processing time among all paths

L: Latest station

S: Slack

FdS: Total number of followers divided by slack

LdF : Latest station divided by number of followers

LP : Longest path - maximum number of followers in a path

|F ∗|: Total number of followers

|F |: Number of direct followers

|F v|: Number of available followers

|F s|: Number of assignable followers

BNN : Number of bottleneck nodes within all followers

RE: Recursive cumulated edges

CF : Cumulated number of followers
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Appendix B. Numerical example

In this numerical example, we consider a seven-task problem with the

cycle time value C = 12 and a number of stations K = 3. Figure B.3 shows

details on task times and precedence relations.

As mentioned in section 3.1, our algorithm generates several sets of so-

lutions using predetermined combinations of priority rules and values of the

parameter α. In this example, we use Longest Task Time and α = 0.6 and

explain how our algorithm builds a solution:

1. The order of the tasks according to the priority rule is: (C, D, E, G,

A, B, and F).

2. Using formula (7) and (8), the threshold for station 1 is T1 =

∑G
i=A ti
K

=

3 + 2 + 7 + 6 + 5 + 1 + 4

3
=

28

3
, and the minimum closing load value

in this station is MCL1 = αT1 = 0.6× 28

3
= 5.6.

3. The set of eligible tasks is {A,B}.

4. Task A is assigned to station 1 as it has the highest priority.

5. To decide whether the station should be closed or not, we use (9) to

compute the value P(close r). Here P(close r) = 0 since w1 = 3 <

5.6 = MCL1.

6. A random uniform number is generated in [0, 1] to be used for making

the decision of closing the stations after each assignment. The number

we obtain is 0.65.

7. As 0 < 0.65, we decide to keep station 1 open and continue loading it.

8. The set of eligible tasks is updated, and the task with the highest

priority in this set (task C) is identified and assigned.

9. As in step 5, we compute the new value of P(close r) and find P(close r) =
(3 + 7)− 5.6

12− 5.6
= 0.6875.
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10. As 0.6875 > 0.65, the decision is to close station 1.

11. Station 2 is opened, and the same process is applied through which

tasks B, D and F are assigned to this station. Observe that P(close r) =
(2 + 6 + 1)− 0.6× 9

12− 5.4
=

6

11
< 0.65. Thus, the decision resulting from

the probabilistic rule (section 3.1.2) is not to close station 2. However,

because none of the remaining tasks satisfy the constraints, station 2

is closed and station 3 is opened for assignment.

12. Following the same procedure, tasks E and G are assigned to station 3.

Using (6), the objective function value associated to this solution is Z =

102 + 92 + 92 = 262. Figure B.4 illustrates the feasible assignment of tasks

to stations leading to this solution, wherein letters refer to the tasks, and

numbers in parentheses refer to their processing times. Observe that:

• For the same combination of a priority rule and a α value, we may

obtain different solutions simply if the random number generated in

step 6 is different. That’s why our algorithm generates a set of different

solutions for each combination of a priority rule and a α value.

• Similarly, a different set of solutions can be obtained for any other

combination of a priority rule and a α value.
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Figure B.3: Precedence network with processing times for the example in Appendix B.

Figure B.4: A feasible solution obtained by our algorithm for the example in Appendix
B.
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Appendix C. Results of Pilot Tests on 39 medium-sized instances,

sorted by increasing average percentage deviations.

rule α avg. rule α avg. rule α avg. rule α avg.

%dev %dev %dev %dev

CP 0.4 0.96% CF 0.2 1.08% CPW 0.2 1.18% S 0 2.43%

CP 0.7 0.97% RE 0.4 1.08% CPW 0.1 1.18% S 0.2 2.51%

CP 0.5 0.97% CF 0.1 1.08% CPW 0.8 1.19% S 0.3 2.56%

CP 0.6 0.97% LP 0.6 1.09% LdF 0.3 1.20% S 0.4 2.56%

CP 0.3 1.00% RE 0.3 1.09% |F ∗| 0.3 1.21% S 0.5 2.62%

CP 0.1 1.00% LP 0.3 1.10% |F ∗| 0.4 1.21% S 0.6 2.87%

CF 0.6 1.01% RE 0.8 1.10% LdF 0.2 1.21% S 0.7 3.17%

RE 0.6 1.01% LP 0.5 1.11% |F ∗| 0.6 1.21% S 0.8 3.30%

CP 0.2 1.01% CF 0 1.11% CPW 0 1.22% S 0.9 3.64%

PW ∗ 0.6 1.02% CPW 0.5 1.12% |F ∗| 0.1 1.22% BNN 0 5.56%

PW ∗ 0.5 1.02% CPW 0.6 1.12% LP 0 1.22% BNN 0.3 5.64%

PW ∗ 0.7 1.02% LdF 0.6 1.12% |F ∗| 0.5 1.22% BNN 0.4 5.66%

PW ∗ 0.4 1.03% RE 0.1 1.13% |F ∗| 0.2 1.22% BNN 0.1 5.70%

CF 0.5 1.03% RE 0.2 1.13% LdF 0.1 1.23% BNN 0.6 5.72%

RE 0.5 1.03% LP 0.4 1.13% LdF 0 1.23% BNN 0.5 5.72%

CP 0 1.04% LdF 0.7 1.13% |F ∗| 0.7 1.24% BNN 0.2 5.75%

CF 0.7 1.05% PW ∗ 0 1.13% |F ∗| 0 1.27% APW 0.3 5.95%

CF 0.3 1.05% RE 0 1.13% |F ∗| 0.8 1.27% APW 0.2 6.01%

CP 0.8 1.05% PW ∗ 0.8 1.13% CP 0.9 1.51% |F s| 0.4 6.06%

PW ∗ 0.2 1.05% CPW 0.7 1.13% LP 0.9 1.62% APW 0.4 6.33%

RE 0.7 1.06% LdF 0.5 1.15% PW ∗ 0.9 1.68% |F s| 0 6.33%

CF 0.4 1.07% LdF 0.4 1.15% |F ∗| 0.9 1.75% PW v 0.5 6.34%

PW ∗ 0.1 1.07% LP 0.2 1.15% CPW 0.9 1.79% L 0.4 6.36%

PW ∗ 0.3 1.07% LdF 0.8 1.16% RE 0.9 1.83% PW v 0.4 6.36%

LP 0.8 1.07% LP 0.1 1.17% CF 0.9 1.86% |F s| 0.1 6.37%

CF 0.8 1.08% CPW 0.3 1.18% LdF 0.9 1.97% L 0.2 6.40%

LP 0.7 1.08% CPW 0.4 1.18% S 0.1 2.39% BNN 0.7 6.42%

Continued on next page
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Table C.5 – Continued from previous page

rule α avg. rule α avg. rule α avg. rule α avg.

%dev %dev %dev %dev

L 0 6.45% TdL 0.2 6.96% TdS 0.3 8.27% |F s| 0.8 9.43%

BNN 0.8 6.46% FdS 0.5 7.03% T 0.8 8.31% TdL 0.8 9.51%

|F v| 0.1 6.47% FdS 0.1 7.18% TdS 0 8.33% TdL 0.9 9.52%

|F s| 0.2 6.52% T 0.1 7.21% TdS 0.2 8.35% PW 0.3 9.58%

T 0.2 6.53% FdS 0.6 7.26% TdS 0.4 8.35% |F v| 0.8 9.60%

|F v| 0.2 6.59% T 0.5 7.49% FdS 0.9 8.38% TdS 0.9 9.64%

T 0.3 6.60% PW v 0.1 7.60% TdL 0 8.39% |F s| 0.9 9.64%

L 0.3 6.60% FdS 0.4 7.63% TdL 0.6 8.40% |F v| 0.7 9.66%

L 0.1 6.61% FdS 0.2 7.69% T 0.9 8.43% PW 0.2 9.69%

L 0.5 6.64% PW v 0.6 7.70% APW 0 8.51% PW 0.1 9.80%

|F v| 0 6.66% TdL 0.5 7.73% PW v 0.8 8.54% |F v| 0.9 9.92%

|F s| 0.3 6.68% FdS 0.3 7.74% TdS 0.1 8.55% PW 0 9.99%

T 0.4 6.73% L 0.7 7.81% FdS 0 8.60% |F | 0.3 10.11%

|F v| 0.3 6.74% TdS 0.8 7.83% T 0 8.64% PW 0.4 10.16%

|F v| 0.4 6.74% FdS 0.7 7.84% |F | 0 8.70% |F | 0.4 10.87%

BNN 0.9 6.74% FdS 0.8 7.94% TdS 0.5 8.71% PW 0.5 11.02%

PW v 0.3 6.80% T 0.6 7.95% PW v 0.9 8.79% |F | 0.5 11.18%

APW 0.5 6.82% APW 0.6 7.95% PW v 0.7 8.79% PW 0.6 11.55%

PW v 0.2 6.83% |F s| 0.6 8.00% TdL 0.7 8.90% PW 0.7 12.04%

|F s| 0.5 6.85% L 0.8 8.10% TdS 0.6 8.92% PW 0.8 12.04%

L 0.6 6.85% APW 0.7 8.11% |F | 0.1 9.05% PW 0.9 12.04%

TdL 0.1 6.85% APW 0.8 8.11% |F | 0.2 9.23% |F | 0.6 12.08%

|F v| 0.5 6.90% APW 0.9 8.12% PW v 0 9.26% |F | 0.7 12.34%

TdL 0.3 6.90% |F v| 0.6 8.17% |F s| 0.7 9.29% |F | 0.9 12.56%

APW 0.1 6.92% L 0.9 8.22% TdS 0.7 9.31% |F | 0.8 12.57%

TdL 0.4 6.93% T 0.7 8.25%
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