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Abstract

This study investigates the delivery time quotation and pricing in a two-stage make-

to-order supply chain facing a time- and price-sensitive demand. We consider di¤erent

managerial approaches which results in di¤erent models. First, we study a global model

where a pair of price and delivery time are quoted to customers to maximize the expected

overall pro�t while satisfying a global service level on the whole system. Second, we study

a local model where each stage is required to quote a local delivery time while satisfying a

local service level, and the delivery time quoted to customers consists of both local delivery

times and must satisfy the global service level. The objective is similar to that of the global

model. When both stages target the same service level than the one imposed to the whole

system, we demonstrate under realistic conditions that satisfying the local service constraints

enables to satisfy the global service constraint. This allows to remove the global constraint

from the local model and solve it analytically. With comparison to the global model, the

local model presents several managerial advantages with a limited pro�t loss. The mean gap

is only 1.68% for a service level of 95%. We perform sensitivity analyses to derive insights

into the impact of market characteristics and capacities on the performance of each stage

and the overall performance. Finally, we extend the local model by allowing each stage to

targeting a di¤erent service level. This leads to closing the pro�t gap with the global model.
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1 Introduction

The delivery time (DT) quotation and pricing are strategic decisions that determine the demand

of a substantial majority of customers, and signi�cantly impact the �rm�s pro�tability (Celik

and Maglaras, 2008, Huang et al., 2013, Hammami and Frein, 2014, Xiao and Qi, 2016). While

the selling price has a well-understood impact on demand and pro�tability, the DT factor may

be more complicated. Indeed, quoting a shorter DT can yield a higher demand but increases

the risk of late delivery. As reliability in meeting agreed DTs is of value to customers (Boyaci

and Ray, 2006, Kingsman et al. 1998), �rms generally target a given service level. However,

to satisfy the service level constraint (i.e. to guarantee that the probability of respecting the

quoted DT is greater than the service level), it may be required to quote a longer DT, which may

deter some customers and then yields a lower demand. Combining DT quotation and pricing

implies more complex trade-o¤s since pricing impacts the demand rate and, consequently, has

an e¤ect on the DT quotation (a smaller price generates a higher demand but increases the risk

of late delivery).

To o¤er a short DT, some companies adopt a make-to-stock (MTS) production policy. In

this case, the work is released based on demand forecast, and demand is satis�ed from the avail-

able stock. However, when there are diversi�ed and uncertain customer requirements or when

holding inventory is costly, the downstream operations may prefer to adopt a make-to-order

(MTO) approach, i.e., release the work only in response to customers� orders. Many practical

systems combine both MTS and MTO operations. Indeed, there is generally a Customer Order

Decoupling Point (CODP) that divides the operations into forecast-driven operations (upstream

of the CODP), and customer order-driven operations (downstream of the CODP). The DT of

a customer order mostly depends on the lead times associated with the MTO operations (if

one ignores the stockout in the CODP) (Hammami et al. 2017). This study focuses on the

MTO operations occurring after the CODP. According to Haskose et al. (2004), the production

process associated with the MTO operations can be viewed as a network of queues, of di¤er-

ent types. The authors explained that one possible con�guration is the tandem network with

at least two stages. In practice, this corresponds to MTO manufacturing systems where each
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customer order requires processing (transformation work) on a series of workstations through

the production facilities Haskose et al. (2004).

This research investigates the DT quotation and pricing in a MTO supply chain (SC) facing

a DT- and price-sensitive demand. The extant works typically aggregate the SC into a single

operation stage and model the system as a 1 queue. One remark is in order here. A

few works investigated a two-stage SC (e.g., Liu et al. 2007, Zhu, 2015, Xiao and Qi, 2016).

However, these works also consider only one operation stage, whereas the other stage just plays

a pricing role and does not a¤ect the sojourn time of customers� orders in the system, so does

not impact the DT quotation. Consequently, the system is also modeled as a single queue

(similar to single-stage models). A more detailed analysis of processing and waiting lead times

suggests to model the system as a network of queues (Haskose et al. 2004). This is often more

realistic than considering a single aggregated operation.

This is the �rst paper to investigate the DT quotation and pricing in a MTO tandem

queue model consisting of two operations stages (each stage has a �nite capacity) and facing a

random DT- and price-sensitive demand. This corresponds, for instance, to a system where the

upstream stage manufactures a semi-�nished product and the downstream stage manufactures

and/or assembles the �nal product. Our approach is particularly interesting when the whole

system can be decomposed into two independent sub-systems, such as in the following situations.

² When the processing operations are located in two di¤erent facilities, it is generally more

suitable to model each facility as a separate stage instead of aggregating the system

into a single operation stage, especially when each facility has a di¤erent role. Indeed,

this enables to set speci�c objectives to each facility and to assess its local performance.

Considering two stages is also more representative of real SCs. There are many examples

of SCs with MTO operations located in two di¤erent facilities, and where each facility has

a speci�c role (see e.g., Zhu, 2015, Liu et al. 2007).

² The operations stages are usually of di¤erent natures. For instance, they may correspond

to a machining process followed by an assembly process, or to a design/con�guration

process followed by a manufacturing process, which is a common situation for the man-

ufacturers of capital goods equipment, mainly producers of machines for making things.

In such cases, it is more realistic to consider a distinct stage for each type of operations

instead of a single aggregated stage.
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We model the system as a tandem queue 1¡ 1 Both stages have a �nite

capacity and impact the sojourn time of customers� orders in the system. The demand arrives

at the downstream stage according to a Poisson process and the mean demand rate linearly

decreases in the o¤ered price and the quoted DT. The service time in each stage is exponentially

distributed. The assumption of exponential service times is suitable for the cases where there is

a high service time variability. Kingsman et al. (1998) argued that there is often a high level of

variability with respect to the processing times. Haskose et al. (2004) also reported that service

times are often unreliable due to the large proportion of time spent in the queues.

We address this problem with two di¤erent managerial approaches.

² A global approach. The decision maker chooses a price and a DT to maximize the overall

expected pro�t while guaranteeing a minimum service level, denoted by  to customers.

Thus, the probability that the sojourn time in the system is smaller than the quoted DT,

must be greater than . This constraint is referred to by the global service constraint

as it applies to the whole system. The global service constraint leads to a challenging

model since the sojourn time in a 1¡ 1 queue follows a hypo-exponential

distribution (whereas it is exponentially distributed for a single 1 queue).

² A local approach. While considering the same objective function of the global model,

each stage is here required (by the decision maker) to quote a local DT while satisfying

locally the service level . The DT quoted to customers consists of both local DTs. Since

the customers are only interested in the global service level, the global service constraint

must also be satis�ed. This strategy can be interesting in practice as it gives a clear

objective (in terms of DT quotation) to each stage. Hence, on the one hand, it is easier to

implement and, on the other hand, it enables to control and assess the local performance

of each stage (facility).

The global model is very hard to solve. We simplify this model and propose a numerical

solving approach. For the local model, we demonstrate that satisfying the local service con-

straints enables to satisfy the global service constraint when (i) the DT quoted to customers is

the sum of local DTs, and (ii) both stages target the same service level than the one imposed

to the whole system. This enables to obtain a simpler formulation of the local model. We

then solve this model and provide the optimal solution analytically. We quantify the pro�t

loss resulting from using the local model instead of the global model and show that this loss is
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relatively small, especially in the general case where the stages do not have the same capacity.

Thus, the local model can also be used as an approximation of the global model, which is an

interesting result since we solve analytically the local model but the global model cannot be

solved. Then, we conduct sensitivity analyses and derive insights into the impact of market

characteristics and capacities.

Finally, we extend the local model to consider the case where each stage may target a

di¤erent service level (1 and 2) and where these service levels are also decision variables to

be optimized. In case of balanced capacity, we solve the model analytically and show that the

optimal pro�t is very close to the pro�t obtained with the global model. In case of unbalanced

capacity, we show numerically that considering variable service levels can improve the pro�t with

comparison to the basic local model (it is recalled that 1 = 2 =  in this latter model). We also

study the robustness of our results to the assumption of exponential service times. We simulate

di¤erent service time distributions and show numerically that the exponential assumption can

be a good approximation.

In Section 2, we review the relevant literature. We dedicate Section 3 to the study of the

global model. We develop and solve the local model in Section 4. In Section 5, we compare

both formulations and conduct experiments to derive insights. In Section 6, we study the

robustness of our models and investigate some extensions. We �nally conclude and give future

work directions.

2 Literature review

The present work is related to the stream of research on DT quotation and pricing in MTO

environments with endogenous demand. In Table 1, we classify the relevant papers according

to three dimensions: (1) The number of stages in the SC, single-stage or two-stage models;

(2) The decision process, centralized (i.e. only one decision maker undertakes all decisions

simultaneously) or decentralized (i.e. di¤erent decision makers, each one of them undertakes a

subset of decisions); and (3) The number of stages impacting the sojourn time of customers�

orders in the system and, consequently, a¤ecting the DT quotation.
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Table 1. Classi�cation of relevant papers

Single-stage Two-stage Centralized Decentralized Number of stages

SC SC decision decision impacting the DT quotation

Palaka et al. (1998) X X 1

So and Song (1998) X X 1

Boyaci and Ray (2003) X X 1

Ray and Jewkes (2004) X X 1

Boyaci and Ray (2006) X X 1

Zhao et al. (2012) X X 1

Albana et al. (2018) X X 1

Pekgün et al. (2008) X X 1

Pekgün et al. (2017) X X 1

Liu et al. (2007) X X 1

Zhu (2015) X X 1

Xiao and Qi (2016) X X 1

Our paper X X 2

In a pioneer paper, Palaka et al. (1998) studied the problem of DT quotation, pricing, and

capacity utilization of a pro�t-maximizing �rm modeled as a single-stage 1 queue and

facing a linear price- and DT-sensitive demand. Basically, they investigated two situations with

either a �xed capacity or a �xed price. In both cases, they characterized the optimal solution

with cubic equations. So and Song (1998) investigated a quite similar problem while using a log-

linear demand model (Cobb-Douglas) instead of the linear demand. The framework developed

by Palaka et al. (1998) has been extended by many authors. Boyaci and Ray (2003) considered

a �rm selling two substitutable products (a regular product with a given standard DT, and an

express product that is supposed to have a faster DT) in a price- and DT-sensitive market. Each

type of demand is served from a di¤erent facility, each facility is modeled as a 1 queue.

This work has been extended by Boyaci and Ray (2006) to incorporate the delivery reliability

(i.e. the service level) as a new decision variable. Ray and Jewkes (2004) incorporated the

economies of scale by assuming that the unit operating cost is decreasing convex with respect

to the mean demand rate and studied a simpli�ed version of Palaka et al.�s model where it is

assumed that the price is not an independent variable but is a linear decreasing function in the
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quoted DT. Another interesting extension was proposed by Zhao et al. (2012). The authors

compared the strategy where a �rm o¤ers a single DT and price quotation to the strategy when

a �rm o¤ers a menu of DT and prices for customers to choose from. Similar to the previous

works, the system is modeled as a 1 queue, and the demand is linear in price and DT.

Recently, Albana et al. (2018) extended the existing works by modeling the unit operating cost,

not as a constant, but as a convex decreasing function in the quoted DT. This assumes that

the operational cost decreases if a longer DT is quoted to customers. The authors studied three

settings: (i) DT is the unique variable, (ii) DT and price are variables with a �xed capacity,

and (iii) DT, price, and capacity are variables.

The papers described above studied a single-stage SC. In what follows, we focus on the

papers that considered a two-stage SC, which is more relevant to our study. Pekgün et al.

(2008) studied the centralization and decentralization of pricing and DT decisions for a MTO

�rm modeled as a 1 queue and facing a linear price- and DT-sensitive demand. Their

centralized model is similar to Palaka et al.�s model but with a constant capacity and without

holding and penalty costs. For the decentralized model, they studied two settings with either

marketing or production as a leader. The production department quotes a DT and the marketing

department quotes a price. The authors observed, for instance, that a higher capacity results

in a greater �exibility and a higher pro�t for a centralized �rm. However, a higher capacity

does not necessarily result in a higher pro�t for a decentralized �rm. The authors also studied

a coordination mechanism where marketing pays a given amount to production for each unit

produced, and both departments receive a bonus payment as the fraction of the total revenue

generated. Pekgün et al. (2017) extended the previous research by considering two �rms that

compete on price and DT decisions in a common market. For each �rm, both centralization

and decentralization (with either marketing or production as the leader) were considered. The

authors found that under intense price competition, the �rms may su¤er from a decentralized

structure. In contrast, under intense DT competition, a decentralized strategy with marketing

as the leader can not only result in signi�cantly higher pro�ts, but also be the equilibrium

strategy.

Liu et al. (2007) studied a decentralized SC with a supplier and a retailer facing a price-

and DT-dependent demand. The supplier�s decisions are the quoted DT (to customers) and the

wholesale price (to the retailer). The retailer�s decision is the �nal price quoted to customers.

The Stackelberg game was used to analyze the problem of the supplier (as a leader) and the

7



retailer (as a follower). The authors illustrated some of their results by considering the supplier

as a1 queue, the retailer plays only a pricing role and does not impact the sojourn time in

the system. Using the performance of the corresponding centralized system as a benchmark, the

authors showed that the decentralized decisions are ine¢cient and lead to inferior performance

due to the double marginalization e¤ect. Zhu (2015) considered a decentralized SC consisting of

a supplier and a retailer where the supplier (as a leader) determines the capacity and wholesale

price, and the retailer (as a follower) decides the �nal price and the DT. Similar to Liu et al.

(2007), the demand is linear in the retailer�s price and the quoted DT. The supplier�s facility

was modeled as a 1 queue. The retailer plays an intermediate role and does not impact

the quoted DT. By using the decentralized chain without capacity decision as a benchmark,

the authors demonstrated that the integration of capacity decisions can signi�cantly reduce

the pro�t loss caused by the double marginalization. Finally, Xiao and Qi (2016) considered

a two-stage SC with one supplier, operating in MTS where it was assumed that stock-out

cannot happen, and one MTO manufacturer, modeled as a 1 queue. Thus, the quoted

DT depends only on the DT of the manufacturer. In the basic model, the supplier chooses

the wholesale price and the manufacturer determines the resale price and the quoted DT. The

authors also studied the case where the manufacturer determines the resale price, the quoted

DT, and the delivery reliability or the capacity, and where demand is a linear function in these

three variables. The authors investigated the coordination of the channel via an all-unit quantity

discount contract under di¤erent scenarios and derived some managerial insights, for example,

how the delivery reliability may a¤ect the demand rate and the channel pro�t, and whether the

all-unit quantity discount scheme can still coordinate the SC.

The literature overview shows that the extant works (either single-stage or two-stage models)

calculate the sojourn time of customers� orders in the system based on only one operation stage,

so typically model the system as a single 1 queue. This research extends the extant

literature by considering a two-stage centralized SC where both stages perform operations and

impact the DT quoted to customers.

3 Model with global service constraint

We �rst describe the general modeling framework adopted in this paper and then formulate the

global model.
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3.1 Modeling framework

We consider a SC consisting of two MTO operations stages. The demand arrives at the down-

stream stage according to a Poisson process with a mean arrival rate . The mean demand rate

linearly decreases in the quoted DT and price. We respectively denote by  and  the selling

price and the DT quoted to customers. Thus,  = ¡¡ where  is the market potential,

and  and  are respectively the price-sensitivity and the DT-sensitivity of demand. Both

upstream and downstream stages have a �nite capacity, and their service (processing) times are

exponentially distributed with mean service rates 1 and 2, respectively. Thus, we model the

system as a tandem queuing network (1¡1) as illustrated in Figure 1.

Figure 1. The studied system modeled as a Tandem queue

To prevent the SC from quoting unrealistic and unreliable DT, a service level  (de�ned by

the �rm) must be satis�ed. Thus, the probability of serving customers� demand on time must

not be smaller than . We respectively denote by 1 and 2 the sojourn times (waiting time

+ processing time) in the upstream and downstream stages. Hence, the total sojourn time in

the system is  = 1+2, and the service constraint is thus given by Pr(1+2 · ) ¸  We

refer to this constraint by the global service constraint (as it applies to the whole SC).

3.2 Model formulation and analysis

In the global model, the �rm decides the price and the DT ( and ) to maximize the overall

expected pro�t while satisfying a global service constraint. We let () denote the global

service model. The formulation of this model is described below. The pro�t is calculated in

equation (1) as the di¤erence between the revenue and the cost, where 1 and 2 respectively
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denote the unit direct variable cost for stage 1 and stage 2. Equation (2) gives the mean demand

rate as a function of price and DT. In a tandem queue 1¡1 it is known that the

sojourn time in each stage is exponentially distributed with mean 1
1¡ and 1

2¡ for upstream

and downstream stage respectively, and that the total sojourn time in the system (i.e.  =

1 + 2) follows the hypo-exponential distribution if 1 6= 2 and follows the Erlang (2 )

distribution if 1 = 2 = . Therefore, the global service constraint can be formulated as given

in constraint (3). Constraint (4) guarantees a steady state at each stage and imposes a positive

demand.

() Maximize
¸0

¦( ) = (¡1 ¡2) (1)

Subject to  = ¡ ¡  (2)8><>: 1¡ 2¡
2¡1 

¡(1¡) + 1¡
2¡1 

¡(2¡) ¸  if 1 6= 2

1¡ ¡(¡) ¡ (¡ )¡(¡) ¸  if 1 = 2 = 
(3)

0 ·   minf1 2g (4)

Obviously, given the complexity of the service constraint, model () cannot be solved

analytically. We shall try to simplify the model in order to solve it numerically with an opti-

mization software. We �rstly derive the following Lemma.

Lemma 1 The service constraint is binding (for both cases 1 6= 2 and 1 = 2) and, conse-

quently, we have Pr(1 + 2 · ) =  at optimality.

Proof. We prove this result by contradiction. Suppose that we have an optimal solution ¤ and

¤ such that Pr(1 + 2 · ¤)  . The optimal pro�t in this case is ¦¤(¤ ¤) If we decrease

the DT from ¤ to 
0
while keeping the price constant until we have Pr(1 + 2 · 

0
) = 

then we will get ¦
0
(
0
 ¤)  ¦¤(¤ ¤) because demand has increased. Thus,

³

0
 ¤
´
is feasible

and gives a higher pro�t than (¤ ¤), which is impossible. The service constraint is therefore

binding. Of course, this result holds for both cases 1 6= 2 and 1 = 2

We let ( ) = Pr(1+2 · )¡ =

8><>: 1¡ ¡ 2¡
2¡1 

¡(1¡) + 1¡
2¡1 

¡(2¡) if 1 6= 2

1¡ ¡ ¡(¡) ¡ (¡ )¡(¡) if 1 = 2 = 
.

Since constraint (3) is binding, we must have ( ) = 0 at optimality. Clearly, equation

( ) = 0 cannot be solved analytically. Nevertheless, for each �xed price , we can solve
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equation () = 0 numerically and get the corresponding values of . To simplify the problem,

we consider the result of Lemma 2.

Lemma 2 For a given price , equation () = 0 has only one positive root.

Proof. On the one hand, it is known that the longer the quoted DT is, the higher the probability

of satisfying the service constraint becomes. Therefore, Pr(1 + 2 · ) is increasing in  and,

consequently, () is increasing in . On the other hand, () is continuous, and one can verify

that 
!0

() = ¡  0 and 
!+1

() = 1 ¡   0 Hence, equation () = 0 has only one

positive root.

We let 0() denote the positive root of equation () = 0 (obviously, this root depends on

the value of ). Therefore, model () becomes equivalent to the following single-variable

model.

() Maximize
¸0

¦() = (¡1 ¡2) (¡ ¡ 0()) (5)

Subject to 0 · ¡ ¡ 0()  minf1 2g (6)

As we cannot get the closed-form expression of 0() no more analytical development can

be made. Nevertheless, given that the problem was simpli�ed and reduced to a single-variable

optimization model and that 0() can be obtained numerically by any optimization software,

we can solve model () with a numerical approach.

Indeed, we �rst highlight that we are interested only in the values of  ranging from1+2

to 
 since, otherwise, the pro�t cannot be positive (price is smaller than cost) or the model

cannot be feasible (negative demand). To solve model (), we proceed as follows. For

each given price  2
£
1 +2




¤
 we solve the equation () = 0 and obtain the unique

positive root 0(). Then, we calculate its associated pro�t ¦() according to equation (5).

This procedure enables to draw numerically the curve ¦() as a function of  and to deduce

the optimal solution.

Remark 1 We performed extensive numerical tests and found that the curve ¦() is concave

for all tested instances. However, we were not able to prove the concavity as we do not have the

explicit expression of 0()
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4 Alternative model with local service constraints

In many practical cases, the company targets a global service level, and then each stage (or

facility) is asked to satisfy this same service level. In addition, for many companies, the service

levels have always been viewed as input parameters (sometimes imposed by the market) and

not as decision variables to be optimized. When optimizing the service levels is not a priority, a

natural approach consists in imposing the same service level everywhere. For instance, a global

leader in clinical diagnostics and industrial microbiology operates in MTO the last production

phases of some products that have a limited shelf life; this company targets a service level of

97% at all stages in order to achieve a competitive advantage in a market that is highly sensitive

to lead time issues.

In this section, we develop an alternative formulation of the problem by considering that

each stage is asked to quote a local DT (1 and 2 for stage 1 and stage 2, respectively) while

satisfying locally the service level  The whole SC quotes the DT  = 1 + 2 to customers.

Given that the customers are interested only in the global service level, it is important to also

satisfy the global service constraint. The local model, denoted by (), is provided below.

The objective function is given in Eq. (7). The mean demand rate  is given by Eq. (8).

The local service constraints are Pr(1 · 1) ¸  and Pr(2 · 2) ¸  for stage 1 and stage

2, respectively. Given that 1 and 2 follow the exponential distribution, the local service

constraints are given by constraints (9) and (10). Constraint (11) represents the global service

constraint (i.e. Pr(1 + 2 · ) ¸  with  = 1 + 2). It is highlighted that we now have

3 independent decision variables 1 2 and  (instead of 2 independent variables,  and , for

model ()).
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() Maximize
12¸0

¦(1 2 ) = (¡1 ¡2) (7)

Subject to  = ¡ ¡  (8)

1¡ ¡(1¡)1 ¸  (9)

1¡ ¡(2¡)2 ¸  (10)8><>: 1¡ 2¡
2¡1 

¡(1¡) + 1¡
2¡1 

¡(2¡) ¸  if 1 6= 2

1¡ ¡(¡) ¡ (¡ )¡(¡) ¸  if 1 = 2 = 
(11)

 = 1 + 2 0 ·   minf1 2g (12)

The motivations and challenges of this alternative formulation are discussed below.

² Managerial perspective. In practical SCs, imposing local service constraints helps to give

a clear objective to each stage and, consequently, to e¢ciently manage and evaluate its

performance. If we just impose a global service constraint, then it is known that the

whole system must satisfy Pr(1 + 2 · ) ¸  but it is not clear which DT must be

quoted by each facility and with which service level. It is therefore more practical to

impose a service constraint to each facility, and then to deduce the total DT that can

be quoted to customers. However, imposing local service constraints will necessarily lead

to a smaller pro�t for the �rm (since we have more constraints). If the amount of pro�t

loss is signi�cant, then the local model might be useless despite its advantages. It is then

important to evaluate the pro�t loss resulting from using the local model instead of the

global model. This will be discussed in Section 5.

² Analytical perspective. In a tandem queue 1¡1, satisfying the local service

constraints does not necessarily guarantee the satisfaction of the global service constraint.

In fact, if each stage  quotes DT  while satisfying the local service level  then this does

not necessarily imply that the SC can quote the DT  = 1 + 2 with the same service

level  This is why we added the global service constraint to model () (in addition

to local constraints). This leads to a very hard model. However, if we demonstrate under

realistic conditions that satisfying the local service constraints can lead to satisfying the

global service constraint then we can simplify the model. This result, not known in the
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extant literature, will be the focus of the next subsection.

4.1 From global to local service constraints

The objective of this technical section is to demonstrate how satisfying the local service con-

straints can lead to satisfying the global service constraint when (i) the DT quoted to customers

is the sum of local DTs, and (ii) both stages target the same service level than the one imposed

to the whole system. We veri�ed that this result is not always guaranteed, i.e. it is possible that

the local constraints are satis�ed but the global constraint is not. However, our analysis shows

that this result holds when the service level  veri�es one condition. In this section, we charac-

terize this condition using function () de�ned below. This function is obtained analytically

from the characteristics of the sojourn time distributions in a tandem queue 1¡1

(see the proof of Proposition 1). It is recalled that each of 1 and 2 follows the exponential

distribution, whereas  = 1 + 2 follows the Erlang (2 ) distribution for 1 = 2 = , and

the Hypo-exponential distribution for 1 6= 2 We thus have di¤erent expressions of () based

on the values of 1 and 2

() =

8>>>>><>>>>>:
¡ 2(1¡ ) ln

³
1

1¡
´

if 1 = 2

2
1

µ
1¡ (1¡ )

1
2

¶
¡
µ
1¡ (1¡ )

2
1

¶
if 1  2

1
2

µ
1¡ (1¡ )

2
1

¶
¡
µ
1¡ (1¡ )

1
2

¶
if 1  2

 where 1 = 1¡  and 2 =

2 ¡ 

Proposition 1 When () ¸ 0 the following result holds:
If [Pr(1 · 1) ¸  and Pr(2 · 2) ¸ ] then Pr(1 + 2 · 1 + 2) ¸ 

Proof. It is �rstly noted that the problem is symmetric in 1 and 2 Therefore, when 1 6= 2

we assume without loss of generality that 1  2 (i.e. 2  1) () has di¤erent expressions,

so we start with the case of 1 = 2 =  and then focus on the case of 1  2

- Case of 1 = 2 =  Suppose that the local constraints are satis�ed (i.e. Pr(1 · 1) ¸ 

and Pr(2 · 2) ¸ ). If we demonstrate the result when the local constraints are binding

(i.e. for Pr(1 · 1) =  and Pr(2 · 2) = ), then the result also holds when Pr(1 ·
1)   and Pr(2 · 2)   In what follows, we consider that the local service constraints

are binding (i.e. we have at optimality Pr(1 · 1) =  and Pr(2 · 2) = ). Pr(1 ·
1) =  , ¡(¡)1 = 1 ¡  , 1 =

ln( 1
1¡ )

(¡) and similarly, Pr(2 · 2) =  , 2 =
ln( 1

1¡ )
(¡) 

Hence, 1 = 2 =
ln( 1

1¡ )
(¡) = 

2  For the global service constraint, Pr(1 + 2 · ) ¸  ,

14



1 ¡ ¡(¡) ¡ (¡ )¡(¡) ¸  Since  =
2 ln( 1

1¡ )
(¡) and ¡(¡) = (1¡ )2, it comes that

Pr(1 + 2 · ) ¸  , 1 ¡ (1¡ )2 ¡ 2 ln
³

1
1¡
´
(1¡ )2 ¡  ¸ 0 Thus, the global service

constraint is satis�ed when 1 ¡ (1¡ )2 ¡ 2 ln
³

1
1¡
´
(1¡ )2 ¡  ¸ 0 Since 1 ¡   0 this

condition is equivalent to () ¸ 0
- Case of 1  2 (i.e. 2  1) Similar to the previous case, we suppose that the local

constraints are binding (i.e. ¡(1¡)1 = 1 ¡  and ¡(2¡)2 = 1 ¡ ). It is recalled that

Pr(1 · 1) =  , 1 =
ln( 1

1¡)
1¡ and Pr(2 · 2) =  , 2 =

ln( 1
1¡ )

2¡  For 1  2 Pr(1 +

2 · ) = 1 ¡ 2¡
2¡1 

¡(1¡) + 1¡
2¡1 

¡(2¡) Given that ¡(1¡) = ¡(1¡)1¡(1¡)2 =

(1¡ ) (1¡ )
1¡
2¡ and ¡(2¡) = (1¡ ) (1¡ )

2¡
1¡  it comes that Pr(1 + 2 · ) = 1 ¡

2¡
2¡1 (1¡ ) (1¡ )

1¡
2¡ +

1¡
2¡1 (1¡ ) (1¡ )

2¡
1¡  Therefore, the global service constraint

Pr(1 +2 · ) ¸ , 1¡ ¡ 2¡
2¡1 (1¡ ) (1¡ )

1¡
2¡ +

1¡
2¡1 (1¡ ) (1¡ )

2¡
1¡ ¸ 0 which

is equivalent to 1¡ 2¡
2¡1 (1¡ )

1¡
2¡+ 1¡

2¡1 (1¡ )
2¡
1¡ ¸ 0 Using the notation 1 = 1¡ and

2 = 2¡ it comes that Pr(1+2 · ) ¸ , 1¡ 2
2¡1 (1¡ )

1
2+ 1

2¡1 (1¡ )
2
1 ¸ 0Given

that 2  1 (since 1  2) this becomes equivalent to 2¡1¡2 (1¡ )
1
2+1 (1¡ )

2
1 ¸ 0

which can be written as () = 2
1

µ
1¡ (1¡ )

1
2

¶
¡
µ
1¡ (1¡ )

2
1

¶
¸ 0

Based on the result of Proposition 1, we derive the following Corollary.

Corollary 1 Consider a two-stage supply chain, modeled as a tandem queue1¡1

The upstream stage quotes a delivery time 1 with a service level  (i.e. Pr(1 · 1) ¸ ), and the

downstream stage quotes a delivery time 2 with the same service level  (i.e. Pr(2 · 2) ¸ )

There exists 0, unique solution of () = 0 over [0 1]  such that:

If  ¸ 0 then the whole system can quote the delivery time  = 1+ 2 with the service level

 (i.e. Pr(1 +2 · ) ¸ )

Proof. - Case of 1 = 2 = 

In this case, according to Proposition 1, we just need to prove that 9 0 2 [0 1] such that,

if  ¸ 0 then () = ¡ 2(1¡ ) ln
³

1
1¡
´
¸ 0

We have 2()
2

= 2
1¡  0, implying that function () is convex. According to the �rst

derivative condition, () reaches its minimum in min = 1 ¡ ¡12. We have (min) = 1 ¡
2¡12  0 In addition, 

!0
() = 0 and 

!1
() = 1 Therefore, over [0 1]   () decreases

from 0 to 1 ¡ 2¡12 and then increases to reach 1. Consequently, equation () = 0 has a

unique solution 0 over [0 1]  and we have () ¸ 0 for  ¸ 0 To illustrate, we draw () as a

function of  in Figure 2 below (please see the case 1 = 2 which corresponds to 1 = 2).

15



- Case of 1  2 (i.e. 2  1)

According to Proposition 1, we need to demonstrate that 9 0 2 [0 1] such that, if  ¸ 0

then () = 2
1

µ
1¡ (1¡ )

1
2

¶
¡
µ
1¡ (1¡ )

2
1

¶
¸ 0

We have 2()
2

=
(2¡1)


 2
1 (1¡)

1
2 + 2

2 (1¡)
2
1


 2
1 2(1¡)2

 0 for  2 [0 1[ (since 2  1). Thus,

() is convex over [0 1[  The �rst derivative function  ()
 =

1(1¡)
1
2 ¡2(1¡)

2
1

1(1¡)  There-

fore, 
!0+

()
 = 1¡2

1
 0 which implies that () is decreasing at the neighborhood

of 0. Furthermore, one can verify that 
!0

() = 0 and 
!1

() = 2
1
¡ 1  0 Con-

sequently, over [0 1]  () decreases from 0 to reach a negative value, and then increases

to reach the positive value 2
1
¡ 1. Consequently, equation  () = 0 has a unique solu-

tion 0 over [0 1]  and we have () ¸ 0 for  ¸ 0 Illustrations are given in Figure 2.

Figure 2. () as a function of  in di¤erent situations

If 1 = 2 (i.e. 1
2
= 1) then 0 is independent of model�s parameters since, in this case,

0 is the unique solution of equation ¡ 2(1 ¡ ) ln
³

1
1¡
´
= 0 over [0 1]. Therefore, we solve

this equation and obtain 0 = 0(1) = 0715 However, when 1 6= 2, 0 is not constant but

depends on the ratio 1
2
 Given that 1 and 2 are variables (as they depend on ) 0 cannot

be determined beforehand but depends on the model�s solution. To overcome this obstacle,

we calculate the highest value of 0 over all possible values of 1
2
 We denote it by max

0  It is

recalled that 1
2
2 ]0+1[ and that three cases should be distinguished: (i) When 1  2

(i.e. 1
2
2 ]0 1[) 0 is the unique solution of 2

1

µ
1¡ (1¡ )

1
2

¶
¡
µ
1¡ (1¡ )

2
1

¶
= 0 over

[0 1]  (ii) When 1  2 (i.e. 1
2
2 ]1+1[  0 is the unique solution of 1

2

µ
1¡ (1¡ )

2
1

¶
¡
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µ
1¡ (1¡ )

1
2

¶
= 0 over [0 1]  and (iii) when 1 = 2 (i.e. 1

2
= 1) 0 = 0(1) = 0715

Since max
0 is the highest value of 0 over all these possible situations, it is calculated as max

0 =

max
1
2
2]0+1[

0(
1
2
) We draw numerically 0(

1
2
) Indeed, we vary the value of 1

2
with a step of

001 and calculate its associated 0(
1
2
) with the MATLAB function "fzero". We �nd that

max
0 = 0(1) = 0715 as illustrated in Figure 3. Clearly, if  ¸ max

0 , then  is greater than any

potential value of 0

Figure 3. 0 as a function of 1
2

The above analysis leads to the following general result.

Corollary 2 If  ¸ 0715, then satisfying the local service constraints enables to satisfy the

global service constraint, i.e., if we have Pr(1 · 1) ¸  and Pr(2 · 2) ¸ , then Pr(1+2 ·
1 + 2) ¸ 

It is important to highlight that this result has a wide applicability since the minimum

service level is greater than 0715 in most practical cases.

4.2 Analytical solving approach

The purpose of this section is to solve model ()We consider  ¸ 0715 Thanks to the result
obtained in the previous section, it is then possible to simplify model () by removing the

global service constraint (as it is automatically satis�ed). We �rst derive the following Lemma.

Lemma 3 Both local service constraints are binding and, consequently, we have 1¡¡(1¡)1 =
 and 1¡ ¡(2¡)2 =  at optimality.

Proof. We prove this result by contradiction. Suppose that we have an optimal solution ¤,

¤1 and ¤2 such that 1¡ ¡(1¡
¤)¤1   or 1¡ ¡(2¡

¤)¤2  . We denote the optimal pro�t in
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this case by ¦¤ We can decrease the DTs from ¤1 to 
0
1 or from ¤2 to 

0
2 while keeping the price

constant until we have a tight service constraint. We denote the new pro�t by ¦
0
 This decrease

in DTs will lead to a smaller quoted DT 
0
= 01 + 02 and, consequently a higher demand. Since

price remains constant, it comes that ¦
0
 ¦¤, which is impossible. Hence, both local service

constraints are binding.

Based on the result of Lemma 3, we deduce that 1 =
ln(1¡)
¡1 and 2 =

ln(1¡)
¡2 at optimality.

Given in addition that  =  ¡  ¡  (1 + 2)  it comes that  =
¡


ln(1¡)
¡1 +

ln(1¡)
¡2


¡

 .

Consequently, model () can be reformulated as a single-variable optimization model (with

 as the unique variable). We write 1 2 and  as a function of  and obtain the objective

function given in Eq. (13). Constraint (14) imposes a positive demand an ensures the stability

condition. Furthermore, to obtain a positive price, we add constraint (15).

( ) Maximize


¦() = (
¡ 

³
ln(1¡)
¡1 +

ln(1¡)
¡2

´
¡ 


¡1 ¡2) (13)

Subject to 0 ·   minf1 2g (14)

¡ 

µ
ln (1¡ )

¡ 1
+
ln (1¡ )

¡ 2

¶
¡  ¸ 0 (15)

Thus, we need to maximize ¦() while satisfying constraints (14) and (15). According

to constraint (14), we know that  2 [0minf1 2g[  However, constraint (15) adds more

restrictions on the value of  To identify the feasible domain of  we analyze constraint (15)

and provide the result in Lemma 4.

Lemma 4 Equation ª() = ¡
³
ln(1¡)
¡1 +

ln(1¡)
¡2

´
¡ = 0 has only one root in [0minf1 2g[ 

We let max denote this root. The feasible domain of model () is given by [0 max] 

Particular case: if 1 = 2 =  then max =
+¡

p
(+)2¡4(+2 ln(1¡))

2 

Proof. We have ª()
 =  ln (1¡ )

³
1

(¡1)2
+ 1

(¡2)2
´
¡ 1  0 (recall that ln (1¡ )  0)

Hence, ª() is decreasing in  Furthermore, ª(0) =  +  ln (1¡ )
³

1
1
+ 1

2

´
 We assume

that + ln (1¡ )
³

1
1
+ 1

2

´
 0 since, otherwise, ª() cannot be positive and, consequently,

constraint (15) cannot be satis�ed. In real situations, the market potential is generally large

enough to have this condition satis�ed.
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Furthermore, 
!minf12g

ª() = ¡1 Thus, over [0minf1 2g[  ª() decreases monoto-
nously from a positive value to ¡1 Therefore, ª() has only one root max in [0minf1 2g[ 
and we have ª() ¸ 0 for  2 [0 max] 

If 1 = 2 =  then ª() =  ¡ 2 ln(1¡)
¡ ¡  Thus, ª() = 0 , 2 ¡ ( + ) +  +

2 ln (1¡ ) = 0 This equation has two roots: 01 =
+¡

p
(+)2¡4(+2 ln(1¡))

2 and 02 =

++
p

(+)2¡4(+2 ln(1¡))
2 , and we have ª() ¸ 0 before 01 and after 02 Given that +

 ln (1¡ )
³
1
 +

1


´
 0, it comes by standard calculus that + 

q
(+ )2 ¡ 4 (+ 2 ln (1¡ ))

Consequently, both of 01 and 02 are positive. We know that there is only one root max in

[0minf1 2g[  Hence, max = min f01 02g = 01 =
+¡

p
(+)2¡4(+2 ln(1¡))

2 .

Based on the result of Lemma 4, we obtain the following simpli�ed equivalent formulation

of model ().

( ) Maximize


¦() = (
¡ 

³
ln(1¡)
¡1 +

ln(1¡)
¡2

´
¡ 


¡1 ¡2) (16)

Subject to 0 ·  · max (17)

Note that in the general case (i.e. for 1 6= 2.), we cannot get the closed-form expression of

max. We let ­() = ¦()
 = 1



³

³

ln(1¡)
(¡1)2

+ ln(1¡)
(¡2)2

´
¡ 

³
ln(1¡)
¡1 +

ln(1¡)
¡2

´
¡ 2+ ¡ (1 +2)

´


If 1 = 2 =  then ­() = 1


³
2 ln (1¡ )¡ (2¡ + (1 +2)) (¡ )2

´
 We denote

by 0 a root of equation ­() = 0 in [0 max] (if this root exists). We provide in the following

Proposition an analytical approach to solve model () to optimality.

Proposition 2 If equation ­() = 0 has a root in [0 max]  then this root is unique.

² If this root exists, then the optimal demand rate ¤ = 0; otherwise the problem is not

relevant since the pro�t cannot be positive.

² Optimal lead times: ¤1 =
ln(1¡)
0¡1 and ¤2 =

ln(1¡)
0¡2 

² Optimal price: ¤ =
¡ ln(1¡)


1

0¡1+
1

0¡2


¡0

 

Proof. After simpli�cation, we have 2¦()

2
= 2 ln(1¡)



³
¡ 1

(¡1)3
¡ 2

(¡2)3
´
¡ 2

  We remind

the reader that we consider the values of  such that 0 ·  · max  minf1 2g which implies
that (¡ 1)

3 · 0 and (¡ 2)
3 · 0 Given, in addition, that ln (1¡ )  0 we conclude that

2¦()

2
 0 Thus, ¦() is strictly concave over [0 max] 
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Given this strict concavity, we deduce that equation ­() = 0 has at maximum only one root

in [0 max]  If ­() = 0 has a root in [0 max], then this root represents the optimal demand

rate ¤ Otherwise, the optimal demand is equal to either 0 or max (since ¦() is concave),

which cannot yield a strictly positive pro�t.

5 Experiments and insights

Model () gives the DT to be quoted at each stage and enables to e¢ciently manage and

evaluate the performance of each facility. From this managerial perspective, it might be preferred

to model () in practice. However, the interest of model () could be questionable if

this model leads to a signi�cant pro�t loss with comparison to (). In this section, we �rst

evaluate the pro�t gap between () and (). Then, we perform sensitivity analyses to

derive insights from the models.

To solve model (), we use the analytical approach of Proposition 2, which provides the

optimal solution. As for model (), we use the numerical approach presented at the end of

Section 3.

5.1 Pro�t gap between models () and ()

We conduct extensive numerical experiments to quantify the pro�t gap between models ()

and (). We consider three di¤erent service levels:  = 95%, 97% and 99%. For each ,

we generate a large number of test cases, 30720 cases for 1 = 2 and 6912 cases for 1 6= 2

as described in Table 2. Therefore, the total number of cases is equal to 92160 and 20736 for

1 = 2 and 1 6= 2 respectively.

Table 2. Test cases

Parameter Test values for 1 = 2 Test values for 1 6= 2

 50, 60, 70, 80, 90, 100 50, 60, 70

 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4

 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4

1 1, 2, 3, 4 1, 2, 3, 4

2 1, 2, 3, 4 1, 2, 3, 4

1 10, 20, 30, 40, 50 10, 20, 30

2 2 = 1 10, 20, 30
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For each instance, we calculate the gap between the optimal pro�t of model () and

the one resulting from model () ( )( ) =
100£


¦¤
()

¡¦¤
()


¦¤
()

 The results are

presented in Table 3.

Table 3. Comparison between models () and ()

 Pro�t gap for 1 = 2 Pro�t gap for 1 6= 2

Mean (%) 258 168

95% Standard deviation 425 102

Con�dence interval (95%) (252 265) (164 172)

Mean (%) 343 213

97% Standard deviation 512 136

Con�dence interval (95%) (336 350) (208 218)

Mean (%) 492 306

99% Standard deviation 657 191

Con�dence interval (95%) (484 501) (299 312)

It is �rstly reminded that the pro�t given by model () is the highest possible pro�t.

Observing Table 3, it can be concluded from a mathematical point of view that model () is

a good approximation of model () with a relatively acceptable mismatch, especially when

1 6= 2We observe that the gap relative to the case of 1 = 2 is higher than the one obtained

for 1 6= 2 but is still acceptable. Furthermore, Table 3 shows that the higher the service

level is, the greater the pro�t gap becomes. Nevertheless, this gap is still acceptable even for

 = 99% (around 3% for 1 6= 2 and less than 5% for 1 = 2).

To better understand the impact of the service level on the pro�t gap, we vary the value

of  and study the pro�t gap between models () and (). We consider the following

numerical example:  = 50,  = 4,  = 4, 1 = 2, and 2 = 3We respectively illustrate

the results in Figures 4 and 5 for the cases (1 = 2 = 20) and (1 = 30 and 2 = 15). We

respectively restrict our analysis to the values of  greater than 0715 and 0667 Indeed, for the

cases 1 = 2 and 1  2 the condition of Proposition 1 (i.e. () ¸ 0) is veri�ed only for 

¸ 0715 and  ¸ 0667 respectively.
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Figure 4. E¤ect of  (1 = 2) Figure 5. E¤ect of  (1  2)

These experiments illustrate our analytical results. In fact, for the value of  verifying

() = 0 (i.e. for  = 0715 and  = 0667 in Figures 4 and 5, respectively), models () and

() are equivalent. Then, an increase in the value of  leads to an increase in () (we refer

the reader to Section 4.1 and to Figure 2 for illustration). This implies an increase in the gap

between models () and () as we can see in Figures 4 and 5.

5.2 Insights from the models

We now study the e¤ect of market characteristics and capacities on optimal decisions and pro�ts.

We consider the following basic numerical example, inspired from that used by Pekgün et al.

(2008):  = 50,  = 4,  = 4,  = 095, 1 = 2, and 2 = 3 In case of 1 = 2 =  we

consider  = 20 In case of 1 6= 2, we focus without lost of generality on the case of 1  2

(since the problem is symmetric) and consider 1 = 30 and 2 = 15

5.2.1 E¤ect of DT-sensitivity

We vary the DT-sensitivity  from 1 to 8 and report the results in Tables 4 and 5 for 1 = 2

and 1  2 respectively. This range of variation covers most situations since we start with

the case where customers are almost insensitive to DT ( = 1 means that price-sensitivity

is 4 times higher than DT-sensitivity) and �nally consider the case where customers are very

sensitive to DT ( = 8 means that DT-sensitivity is 2 times higher than price-sensitivity). It is

noted that ¦¤ refers to the best pro�t obtained for model (), whereas ¦¤ represents

the optimal pro�t of model (). The real service level realized by the SC is referred to by

 Obviously,  is greater than or equal to .
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Table 4. E¤ect of DT-sensitivity (1= 2= 20)

 Model () Model ()

¤ ¤ ¤ ¦¤  ¤1 ¤2 ¤ ¤ ¤ ¦¤ 

1 0.76 8.88 13.78 53.25 95% 0.46 0.46 0.93 8.88 13.56 52.58 98.25%

2 0.68 8.90 13.04 50.85 95% 0.41 0.41 0.82 8.90 12.73 49.72 98.25%

3 0.63 8.91 12.48 48.76 95% 0.38 0.38 0.76 8.90 12.11 47.27 98.25%

4 0.59 8.90 12.02 46.88 95% 0.36 0.36 0.71 8.89 11.60 45.09 98.25%

5 0.57 8.89 11.62 45.17 95% 0.34 0.34 0.68 8.86 11.16 43.11 98.25%

6 0.54 8.87 11.27 43.59 95% 0.32 0.32 0.65 8.83 10.78 41.29 98.25%

7 0.52 8.85 10.95 42.11 95% 0.31 0.31 0.63 8.80 10.43 39.60 98.25%

8 0.51 8.82 10.66 40.71 95% 0.30 0.30 0.61 8.76 10.11 38.02 98.25%

Table 5. E¤ect of DT-sensitivity (1= 30 and 2= 15)

 Model () Model ()

¤ ¤ ¤ ¦¤  ¤1 ¤2 ¤ ¤ ¤ ¦¤ 

1 1.12 9.18 12.16 50.84 95% 0.17 1.04 1.21 9.16 12.13 50.52 96.32%

2 0.90 9.20 11.42 47.93 95% 0.16 0.82 0.98 9.17 11.36 47.35 96.54%

3 0.79 9.19 10.89 45.59 95% 0.16 0.71 0.87 9.15 10.81 44.80 96.68%

4 0.72 9.16 10.47 43.59 95% 0.15 0.65 0.80 9.11 10.36 42.60 96.77%

5 0.67 9.13 10.11 41.80 95% 0.15 0.60 0.75 9.07 9.98 40.64 96.85%

6 0.63 9.10 9.80 40.18 95% 0.15 0.56 0.71 9.03 9.65 38.86 96.92%

7 0.60 9.06 9.52 38.69 95% 0.15 0.53 0.67 8.98 9.34 37.22 96.97%

8 0.58 9.03 9.26 37.30 95% 0.14 0.51 0.65 8.94 9.07 35.70 97.02%

As expected, we observe in both models that the higher the sensitivity of customers to DT

is, the shorter the quoted DT (¤) becomes. It is also interesting to note that the optimal price

is a non-monotonous concave function in DT-sensitivity. Indeed, below a given threshold value,

an increase in  leads to an increase in price in both models. Then, above this value, when the

customers become more sensitive to DT, both models react by decreasing the price. Indeed,

decreasing the price generates more demand and thus o¤sets the decrease of demand caused by

the increase of DT-sensitivity.

We observe that the total DT (i.e. ¤) quoted by model () is always slightly shorter than

that of model () and that the price of model () is always slightly higher than that of

23



model (). Indeed, in model (), the system may satisfy the global service constraint

without satisfying the local constraints, which means that model () has a relatively higher

�exibility. This enables model () to quote a shorter DT and consequently, to o¤er a higher

price.

For model () we have ¤1 =
ln(1¡)
0¡1 and ¤2 =

ln(1¡)
0¡2 (see Proposition 2). Therefore, for

1 = 2, we obtain ¤1 = ¤2 and for 1 6= 2, the stage with a higher capacity always quotes a

shorter DT than the stage with a lower capacity. This is con�rmed by the results of Tables 4

and 5.

We observe that the realized service level obtained with model ( ) is higher than . We

provide hereafter a qualitative explanation. Indeed, it has been demonstrated that when stage

1 and stage 2 respectively guarantee the DTs 1 and 2 with the service level  then the whole

SC can guarantee the DT  = 1+ 2 with the same  However,  = 1+ 2 is not the shortest DT

that can be guaranteed by the SC in this case. Thus, the DT quoted by model () is longer

than the shortest possible DT. This explains why  is greater than  for model () It

is easy to �gure out that the smaller the gap between  and  for model () is, the

smaller the gap between the solution of model () and that of model () becomes. Our

results illustrate this remark.

When 1 = 2, it is also important to note that  for model () is always equal

to 9825% whatever the value of  is. This result can be proven analytically. In fact, in case

of 1 = 2 =  the realized service level is given by 1 ¡ ¡(¡) ¡ ( ¡ )¡(¡) where

 = 1 + 2 and we have at optimality 1 = 2 =

2  Given that we considered local service

constraints in model () and that these constraints are tight at optimality (see Lemma 3),

we have ¡(¡)

2 = 1¡  which implies that ¡(¡) = (1¡ )2 and (¡) = ¡ ln

³
(1¡ )2

´
.

Thus, it comes that  is equal to 1¡(1¡ )2 +(1¡ )2 ln
³
(1¡ )2

´
 Consequently, in case

of 1 = 2 the realized service level for model () depends only on  For  = 95% one can

verify that  = 9825% as we have obtained in Table 4. In model (), the global service

constraint is always binding (see Lemma 1), which explains why we get  =  = 95% in

both tables.

5.2.2 E¤ect of price-sensitivity

We vary the price-sensitivity  and report the results in Tables 6 and 7 for 1 = 2 and 1  2,

respectively.
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Table 6. E¤ect of price-sensitivity (1= 2= 20)

 Model () Model ()

¤ ¤ ¤ ¦¤  ¤1 ¤2 ¤ ¤ ¤ ¦¤ 

1 0.94 31.24 14.98 393.08 95% 0.55 0.55 1.09 31.11 14.52 379.07 98.25%

2 0.83 16.22 14.25 159.96 95% 0.48 0.48 0.96 16.18 13.79 154.11 98.25%

3 0.71 11.30 13.29 83.65 95% 0.42 0.42 0.84 11.27 12.83 80.52 98.25%

4 0.59 8.90 12.02 46.88 95% 0.36 0.36 0.71 8.89 11.60 45.09 98.25%

5 0.50 7.52 10.43 26.26 95% 0.30 0.30 0.60 7.50 10.07 25.21 98.25%

6 0.41 6.63 8.55 13.96 95% 0.26 0.26 0.51 6.62 8.26 13.35 98.25%

7 0.35 6.02 6.46 6.59 95% 0.22 0.22 0.44 6.00 6.24 6.26 98.25%

8 0.30 5.57 4.24 2.41 95% 0.19 0.19 0.38 5.56 4.06 2.25 98.25%

Table 7. E¤ect of price-sensitivity (1= 30 and 2= 15)

 Model () Model ()

¤ ¤ ¤ ¦¤  ¤1 ¤2 ¤ ¤ ¤ ¦¤ 

1 1.07 33.66 12.05 345.17 95% 0.17 1.00 1.16 33.35 12.00 340.08 96.36%

2 0.96 17.23 11.68 142.90 95% 0.16 0.89 1.05 17.10 11.62 140.50 96.47%

3 0.84 11.81 11.18 76.19 95% 0.16 0.77 0.93 11.73 11.10 74.72 96.61%

4 0.72 9.16 10.47 43.59 95% 0.15 0.65 0.80 9.11 10.36 42.60 96.77%

5 0.60 7.63 9.45 24.88 95% 0.14 0.53 0.67 7.60 9.31 24.22 96.98%

6 0.48 6.67 8.02 13.43 95% 0.14 0.42 0.56 6.65 7.87 13.00 97.19%

7 0.39 6.03 6.22 6.40 95% 0.13 0.34 0.46 6.01 6.06 6.15 97.39%

8 0.33 5.57 4.13 2.36 95% 0.12 0.27 0.39 5.56 3.99 2.22 97.56%

As expected, an increase in price-sensitivity leads to a decrease in the o¤ered price for both

models. It is also interesting to see that both models react to an increase in  by quoting a

shorter DT. Indeed, this aims to o¤set the decrease of demand (caused by the increase of )

and consequently, to keep a pro�table amount of demand. Similar to the previous observations

(see Tables 4 and 5), we see that the price quoted by model () is always slightly higher

than that of model (), and that the total DT quoted by model () is always slightly

shorter than that of model ()
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5.2.3 E¤ect of capacity

Finally, we vary the capacity 1 of upstream stage (with 2 �xed to 20) and report the results

in Table 8. It is recalled that the problem is symmetric in 1 and 2, so the same results are

obtained if we �x 1 and vary 2

Table 8. E¤ect of capacity (2 = 20)

1 Model () Model ()

¤ ¤ ¤ ¦¤  ¤1 ¤2 ¤ ¤ ¤ ¦¤ 

10 1.18 9.50 7.27 32.69 95% 1.04 0.23 1.27 9.45 7.11 31.66 96.71

20 0.59 8.90 12.02 46.88 95% 0.36 0.36 0.71 8.89 11.60 45.09 98.25

30 0.47 8.90 12.50 48.77 95% 0.17 0.39 0.56 8.85 12.37 47.56 97.59

40 0.45 8.90 12.61 49.17 95% 0.11 0.40 0.51 8.86 12.53 48.33 96.96

50 0.44 8.90 12.65 49.34 95% 0.08 0.40 0.48 8.87 12.60 48.70 96.55

60 0.43 8.90 12.67 49.42 95% 0.06 0.41 0.47 8.87 12.63 48.91 96.28

70 0.43 8.90 12.69 49.48 95% 0.05 0.41 0.46 8.88 12.65 49.05 96.09

80 0.43 8.90 12.70 49.52 95% 0.04 0.41 0.45 8.88 12.67 49.15 95.95

As expected, an increase in the capacity of one stage enables the SC to quote a shorter DT

and consequently, to generate more demand and to increase pro�t. However, it is important

to note that after a threshold value, increasing the capacity has no longer a signi�cant e¤ect

neither on DT quotation nor on pro�t. In Figure 6, we illustrate the variation of optimal pro�ts

as a function of 1 We observe that the pro�ts increase but with an asymptotic behavior.

Furthermore, it is noted that the highest pro�t gap between models () and () is

obtained when the capacities of upstream and downstream stages are more or less the same,

which is in line with our previous numerical results.
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Figure 6. E¤ect of capacity on optimal pro�ts

For model (), it is important to note that an increase in the capacity of one stage leads

to a shorter quoted DT for this stage but to a longer DT for the other stage. In Figure 7, we

draw the optimal DTs as a function of 1 If we increase 1 we see that 
¤
1 decreases whereas

¤2 increases. Indeed, as the �rst stage quotes a shorter DT, the customers� demand increases

and consequently the second stage, which has a �xed capacity, needs to quote a longer DT to

satisfy its local service constraint.

Figure 7. E¤ect of capacity on DT quotation

6 Model extensions and robustness

In this section, we �rst extend the local model to consider the case where each stage may target

a di¤erent service level (1 and 2) and where these service levels are also decision variables to

be optimized. Then, we investigate whether the assumption of an exponential service time is

a reliable approximation. Indeed, we simulate di¤erent service time distributions and compare

the obtained pro�ts.
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6.1 Variable service levels

In model () we have considered that both stages target the same service level than the one

imposed to the whole SC. We now generalize model () by considering that each stage may

target a di¤erent service level and that these service levels are also decision variables. Thus, the

�rm�s problem is to determine the DT and the service level at each stage as well as the price of

the product in order to maximize the overall expected pro�t. We let 1 and 2 denote the service

levels in upstream and downstream stages, respectively. The new model with variable service

levels is denoted by ( ). We have demonstrated that when the local service constraints

are satis�ed then, under realistic conditions, the global service constraint is also satis�ed if the

same service level  is targeted by each stage and by the whole system. This allowed to remove

the global service constraint from model (). For model ( ), however, each stage may

target a di¤erent service level (1 and 2). In this case, we cannot guarantee that the whole

system can satisfy the global service constraint with service level  Hence, the global service

constraint cannot be removed from model ( ). The formulation of model ( ) is given

below.

( ) Maximize ¦(1 2 1 2 ) = (¡1 ¡2) (18)

Subject to  = ¡ ¡  (1 + 2) (19)

1¡ ¡(1¡)1 ¸ 1 (20)

1¡ ¡(2¡)2 ¸ 2 (21)8><>: 1¡ 2¡
2¡1 

¡(1¡) + 1¡
2¡1 

¡(2¡) ¸  if 1 6= 2

1¡ ¡(¡) ¡ (¡ )¡(¡) ¸  if 1 = 2 = 
(22)

0 ·   minf1 2g (23)

 = 1 + 2 1 ¸ 0 2 ¸ 0 1 2 [0 1[ 2 2 [0 1[  ¸ 0 (24)

In case of 1 = 2 we determine analytically the optimal solution and then compare model

( ) to models () and (). When 1 6= 2 we solve model ( ) numerically.

In this case, our main goal is to assess the quality of the solution that has been obtained with

model ()
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6.1.1 Case of 1 = 2

We �rst consider the case 1 = 2 =  and derive the following result.

Proposition 3 For model ( ) with 1 = 2 =  we have at optimality ¤1 = ¤2 =  where

 is the unique root over [0 1] of equation 1¡ (1¡)2+2(1¡)2 ln(1¡)¡  = 0 In addition,

for ¤1 = ¤2 =  the global service constraint is automatically satis�ed.

Proof. It is �rstly noted that the local service constraints are binding and consequently, we

have at optimality 1 ¡ ¡(¡)1 = 1 and 1 ¡ ¡(¡)2 = 2 In addition, the problem is

symmetric, so it can be demonstrated that there is an optimal solution such that 1 = 2 We

let  = 1 = 2 It comes that 1 = 2 =
¡ ln(1¡)

¡  implying that  = ¡2 ln(1¡)
¡  The global

service constraint is therefore equivalent to 1 ¡ (1 ¡ )2 + 2(1 ¡ )2 ln(1 ¡ ) ¡  ¸ 0 We let

() = 1¡(1¡)2+2(1¡)2 ln(1¡)¡ 0() = ¡4(1¡) ln(1¡), implying that 0()  0
over [0 1]  Given that 

!0
() = ¡  0 and 

!1
() = 1 ¡   0 the equation () = 0

admits a unique solution over [0 1]  We denote it by  Thus, the global service constraint is

equivalent to  ¸  Since there is not any interest in increasing the local service levels, we have

at optimality ¤1 = ¤2 = 

Using the result of the previous Proposition, we can replace 1 and 2 with their optimal

value  and remove the global service constraint from model ( ). Consequently, in case

of 1 = 2 model ( ) becomes equivalent to model () if we replace  with  in this

latter model. Therefore, we use the analytical approach developed earlier for model () to

solve model ( ) to optimality.

We then conduct extensive numerical experiments to assess the quality of the solution of

model ( ) with comparison to the ones obtained for models () and (). To

perform the experiments, we use the 30720 test cases generated according to Table 2 for each

given service level. For each instance, we calculate the following pro�t gaps:

² Gap between model () andmodel ( ), given by( )() =
100£


¦¤
( )

¡¦¤
()


¦¤
( )



² Gap between model ( ) and model (), given by()(  ) =
100£


¦¤()¡¦¤( )


¦¤
()



We consider three values of  and provide the results in Table 9.
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Table 9. Quality of the solution obtained for model ( )

Pro�t gaps  = 095  = 097  = 099

Mean 245 294 431

( )( ) Std. Deviation 411 465 610

Conf. Interval (95%) [239 251] [288 300] [423 439]

Mean 015 055 071

()( ) Std. Deviation 029 099 185

Conf. Interval (95%) [0145 0154] [054 057] [069 072]

We roughly deduce that most values of ( )( ) are between 239% and 439%.

In case of  = 95% the mean gap is 245% and most values are between 239% and 251%.

Therefore, model ( ) slightly outperforms model () when 1 = 2. This gain is due

to imposing a lower local service level ( instead of ), which enables model ( ) to quote a

shorter DT and consequently to generate a higher demand and to increase pro�t.

As for ( )(  ) most values are between 014% and 072% and they are even com-

prised between 0145% and 0154% for  = 95% Hence, the optimal pro�t obtained with model

( ) is very close to that of model (), which is the highest pro�t that can be achieved

by the �rm. It is important to note that model ( ) cannot achieve the optimal pro�t of

model () in the general case. The reason is that model ( ) has local service constraints

and assumes that the overall DT quoted to customers is equal to the sum of local DTs while

these constraints are not considered in model (). Thus, the optimal solution of model

() may be infeasible for model ( ) which implies that model () generally leads

to a higher pro�t than that of model ( ).

In case of 1 = 2 model ( ) presents many advantages. First, it can be solved an-

alytically to optimality. Second, it can be easily implemented in practice and has managerial

advantages (as explained earlier). Third, it yields a high pro�t that is very close to the one

obtained with model () Consequently, model ( ) can be considered as the best alter-

native in case of 1 = 2.

6.1.2 Case of 1 6= 2

Now, we focus on the case of 1 6= 2 Since it is not possible to obtain an analytical solution,

our main objective here is to assess the quality of the solution obtained with model () In
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other words, we aim to quantify the loss resulting from imposing 1 = 2 = . To solve model

( ) we use a numerical approach based on an iterative procedure. Indeed, we �rstly ignore

the global constraint and test, for a given , di¤erent combinations of 1 and 2 starting from

090 until  with a step of 001 (e.g., 1 = 090 and 2 = 091, 1 = 090 and 2 = 092,. . . ,

1 = 094 and 2 = 092, etc.). More precisely, for each combination we solve the resulting

model with Matlab and obtain in particular 1 and 2. Then, we verify for each combination

whether the global constraint (with  = 1+ 2) is satis�ed. The combinations that do not satisfy

the global constraint are rejected, and we select the combination that yields the highest pro�t

while satisfying the global constraint. It is recalled that the pro�t gap between models ( )

and () is given by (  )( ) =
100£


¦¤
( )

¡¦¤
()


¦¤
( )

 For each given service level 

( = 095 097 and 099) we generate 6912 test cases according to the procedure described in

Table 2. The comparison results are reported in Table 10.

Table 10. Comparison between models ( ) and () when 1 6= 2

Pro�t gap  = 095  = 097  = 099

Mean 157 201 276

( )( ) Std. Deviation 100 136 193

Conf. Interval (95%) [153 161] [196 206] [269 283]

As expected, model ( ) dominates model () in terms of pro�t. However, in most

cases, the gap is between 153% and 283%. In addition, in the industrial sectors where  is

not very high, the gap can even be smaller than 2% as indicated in Table 10. This con�rms

the interest of model () since this model is tractable, can be easily implemented, presents

managerial advantages, and does not lead to a signi�cant loss with comparison to () and

( ).

6.2 Other service times distributions

Our models assume an exponential service time at each stage which is of course an approxima-

tion. As this assumption enables to develop tractable models, it has been widely adopted in

the literature, in general, and in the vast majority of papers on DT quotation, in particular.

The random aspect of service times is of course realistic in several situations. In addition,

many authors argued that there is often a high level of variability with respect to service times

(e.g., Kingsman et al. 1998, Haskose et al. 2004). In these cases, the exponential distribution
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might be relevant because it has a high coe¢cient of variation. Nevertheless, when there is a

small service time variability, the assumption of an exponential service time is often pessimistic.

With comparison to the exponential distribution, the consideration of another service time dis-

tribution that has a smaller variance is expected to yield a shorter quoted DT (for the same

service level) which consequently generates a higher demand and more pro�t. In this section,

we assess the amount of demand loss (and, consequently, pro�t loss) caused by the exponential

assumption.

Thus, we compare the pro�t of model () with exponential distribution (coe¢cient of

variation equal to 1) to the pro�ts obtained when we change the variability of the service time

distribution but without changing the mean service time. We test the Erlang-2 distribution

(coe¢cient of variation equal to 1p
2
) and the extreme case of a deterministic distribution. We

proceed as follows:

² We solve model () for the basic numerical example ( = 50,  = 4,  = 4, 1 = 2,

2 = 3, and  = 95%) with 1 = 2 = 20 and 1 = 60 and 2 = 30 and get the associated

pro�ts.

² We then simulate the system, �rst with the Erlang-2 and then with the deterministic

distribution, in order to �nd the new mean demand rate  that satis�es the service level

 = 95% (the price being �xed to its value obtained with model ())

² The new mean demand rate, of course higher than the one obtained with the exponential

distribution (i.e. for model ()), is used to calculate the new pro�t.

We report the results in Table 11.

Table 11. Robustness to exponential assumption

1 = 2 = 20 1 = 60 and 2 = 30

 Pro�t  Pro�t

Exponential 12.02 46.88 10.47 43.59

Erlang-2 12.52 48.83 10.93 45.50

Deterministic 13.28 51.80 11.47 47.75

We observe in the balanced case that the exponential assumption leads to a loss of demand

of 40% compared to the Erlang-2 distribution and 95% compared to the deterministic case,

and therefore a pro�t loss of respectively 40% and 95%. For the unbalanced case, the values
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of the di¤erent gaps (for both demand and pro�t) become 42% with the Erlang-2 distribution

and 87% with the deterministic distribution.

The results obtained with the exponential distribution are of course pessimistic but remain

interesting with errors of less than 10% on the demands and pro�ts even in the deterministic

case which is obviously very far from the exponential case. With comparison to the Erlang-2,

the gaps are even less than 5%. These results demonstrate in our opinion the interest of our

models even if it would be interesting to investigate other cases with other types of variabilities

that may be very di¤erent from the exponential distribution.

7 Conclusion

We considered the problem of DT quotation and pricing in a two-stage MTO supply chain

modeled as a tandem queue 1 ¡1 and facing a DT- and price-sensitive demand.

We addressed this problem with two di¤erent managerial approaches. In the �rst approach

(global model), a pair of price and DT are quoted to customers to maximize the expected

overall pro�t while satisfying a global service level. In the second approach (local model), a DT

is quoted at each stage while satisfying a local service level, and the DT quoted to customers,

calculated as the sum of local DTs, must satisfy the global service level. When both stages

target the same service level than the one imposed to the whole system, we demonstrated

under realistic conditions that satisfying the local service constraints enables to satisfy the

global service constraint. Based on this result, we simpli�ed the local model and solved it to

optimality with an analytical approach.

The local model presents several managerial and mathematical advantages but leads to a

smaller pro�t with comparison to the global model. We quanti�ed this pro�t loss and showed

that it is relatively small, especially when the stages do not have the same capacity or when

the service level is not too high. Thus, we deduced that the local model can also be used as

an approximation of the global model, which is interesting since the local model was solved

analytically. Then, we conducted sensitivity analyses with both models and derived insights.

As expected, we found that an increase in DT-sensitivity (respectively, price-sensitivity) leads

to quoting a shorter DT (respectively, o¤ering a lower price). Less expected are the facts that

the optimal price is a non-monotonous concave function in DT-sensitivity and that both models

react to an increase in price-sensitivity by quoting a shorter DT. We also found that the total
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DT quoted by the global model is always slightly shorter than that of the local model, and

that the price of the global model is always slightly higher than that of the local model. It was

also interesting to investigate the e¤ect of capacities since our work is the �rst to consider two

operations stages impacting the DT quotation with �nite capacities in both stages. We showed

that an increase in the capacity of one stage leads to a shorter quoted DT for this stage but

a longer DT for the other stage and, consequently, does not necessarily lead to a shorter DT

quoted to the customers. Beyond a threshold value, increasing the capacity has no longer a

signi�cant e¤ect neither on DT quotation nor on the overall pro�t.

Finally, we extended the local model to consider the case where each stage may target a

di¤erent local service level and where these service levels are also decision variables. In case

of balanced capacity, we solved the model analytically and showed that its resulting optimal

pro�t is very close to the one obtained with the global model. In case of unbalanced capac-

ity, we showed numerically that considering di¤erent service levels slightly improves the pro�t

of the local model. We also studied the robustness of our results to the assumption of expo-

nential service times and showed numerically that the exponential assumption can be a good

approximation.

This research studied a centralized setting with only one decision maker for the two stages.

Thus, a natural extension would be to investigate the decentralized setting where each actor

optimizes his own pro�t. Extending the model to more than two stages can also be the focus

of future works but is expected to be a very hard problem, especially in case of di¤erent service

levels between the stages. In this case, a solving approach based on metaheuristics could be

used.
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