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Abstract. A two-stage decentralized supply chain operates in make-to-order under a stochastic
environment. Each stage represents an independent firm that quotes a price and a delivery time to its
downstream while satisfying a minimum service level. The mean demand depends on the final price
and the overall delivery time quoted to the customers by the whole supply chain. We study three
settings. First, the downstream, as a Stackelberg leader, decides its price and controls both delivery
times, and the upstream, as a follower, reacts by deciding its own price. Second, the downstream
decides its delivery time and controls prices, and the upstream reacts by quoting its own delivery time.
Third, the upstream, as a leader, decides its price and controls both delivery times, and the
downstream, as a follower, decides its own price. This is the first study to investigate the delivery time
guotation and pricing in decentralized supply chains where each firm performs operations and has a
delivery time, and the demand is function of both upstream and downstream delivery times in addition
to final price. We characterize analytically the optimal strategy under each setting and derive insights
into the interplay between local delivery times, overall delivery time, prices, demand, and profits. We
investigate how delivery times can be used to coordinate the supply chain and the impact of firms'

capacities.
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1 Introduction

Different industries like aerospace, automotive, construction, in vitro diagnostics, and computers
production operate in make-to-order (MTO) in some stages of the supply chain (SC). MTO
SCs can jointly use the DT and price as a strategic weapon to manage demand and increase
profitability (Pekgiin et al. 2017, Hafizoglu et al. 2016, Huang et al. 2013). As demand

and processing times are generally random in practice (Fang et al. 2013), the DT decision is



complicated since quoting a shorter DT to customers can yield a higher demand but increases the
risk of late delivery. The decentralization of production activities, which characterizes most 21st-
century SCs (Zhu 2015), requires to rethink the DT quotation and pricing decisions as it has led
to SC configurations where operation stages are controlled and managed by independent firms,
each one of them aims to maximizing its own profit (Warsing et al. 2019). Decentralization
raises the question on how to coordinate the local DTs associated with firms’ operations. As
customers’ demand depends on the overall DT guaranteed by the system, it does not suffice
that each firm guarantees its own DT locally to its downstream, but the whole system must
be able to guarantee the overall DT quoted to the customers (with a minimum service level).
The relationship between local DTs and overall DT is also complicated by the stochastic nature
of the problem. This study investigates the interplay between DT quotation, pricing, demand
and profitability in decentralized MTO SCs when each firm undertakes operations (typically,
manufacturing) and has a processing lead time.

We consider two independent profit-maximizing firms in an MTO SC where the mean de-
mand depends on the final price and the overall DT quoted to end customers. Each firm has
a finite capacity and a random processing time, and customers’ demand is also random. We
define this decentralized problem as a sequential game and study three decision settings. First,
the downstream firm, acting as a leader, controls DT decisions and each firm decides its own
price. Second, the downstream firm, acting as a leader, controls pricing decisions and each firm
decides its own DT. Third, the upstream firm, acting as a leader, controls DT decisions and
each firm decides its own price. These decision scenarios are motivated by practical cases as we

explain in Sections 4, 5 and 6, respectively. Our contribution in this paper is twofold.

e This is the first study to investigate the DT quotation and pricing in decentralized MTO
SCs where each firm performs operations and has a DT, and the demand is function of
both upstream and downstream DTs in addition to final price. While most related papers
studied the manufacturer-retailer SC where the retailer’s DT is ignored or a supplier-
manufacturer SC where the supplier’s DT equals zero (as will be shown in Table 1), our
model generalizes this framework by considering the DT of each firm and how it impacts
the demand. Our model particularly fits with the case of SCs with different manufacturing
firms where each firm undertakes operations. For instance, a manufacturer of semi-finished
product who supplies a manufacturer of final product, or a machining firm who supplies

an assembly firm in the manufacturing of industrial machines. Other relevant examples



include a design-engineering firm supplying a building firm in the construction industry.
The existing models, either those considering a single firm under a centralized setting (e.g.,
Albana et al. 2018, Li et al. 2014, Zhao et al. 2012) or two independent firms but where
the overall DT is equal to the DT of only one firm (e.g., Modak & Kelle 2019, Xiao & Qi
2016, Zhu 2015, Liu et al. 2007), cannot be used to study the interactions between each
firm’s DT and price decisions in the above practical cases. While the joint DT quotation
and pricing in a stochastic environment is known to be a challenging problem even with
a single firm, we obtain analytically the optimal solution for each firm and derive some

interesting analytical insights, which we complement with numerical results.

Our study reveals interesting trade-offs that govern the interactions between DTs, prices,
demand, and profits, and leads to new managerial insights, some of them differ (or cannot
be obtained) from existing models. For instance, we find that the local DTs are positively
correlated whatever the decision scenario, which cannot be revealed by models where there
is only one DT. Therefore, a firm will shorten its DT if and only if the other firm shortens
its own DT. While related works found that the upstream and downstream prices are
positively correlated (e.g., Liu et al. 2007, Xiao & Qi 2016), we show that this result does
not always hold if both firms have operations and DT's, which means that a firm may have
interest in decreasing its price if the other firm increases its own price. Another interesting
result is that the follower’s expected profit always increases in quoted DT and in mean
demand, whereas the SC leader’s expected profit is a concave function in quoted DT and
in mean demand. This means that the follower has always interest in increasing demand
while the SC leader will lose if demand exceeds a threshold limit. This result differs from
the findings of Liu et al. (2007) and Xiao & Qi (2016) where the profits of both firms
increase in demand. While most related studies consider only one SC leader (generally,
the upstream), we compare different decision sequences (with either the upstream or the
downstream as a leader) and show in case of balanced capacity (i.e., same capacity for
both firms) that the SC will make the same overall profit and will offer the same product
to the customers (in terms of price and DT) regardless of the firm who decides the DT's
and acts as a leader. Our models consider that both firms have a finite capacity. We show
that the amount of capacity allocated by each firm impacts the quality of SC coordination.
For instance, when the SC leader controls the DTs and each firm decides its own price,

selecting the firm with the largest capacity to act as a leader can generally improve the



SC coordination. Finally, we show under all settings that the local DTs can be effectively
used to coordinate the SC. A judicious DT quotation can significantly increase the overall
SC profit and even make it very close to the centralized profit. However, the coordination

is less efficient in case of unbalanced production capacities.

A literature review is presented in Section 2. Section 3 describes the general modeling
framework. In Sections 4, 5 and 6, we respectively motivate each setting and develop and
solve the corresponding model. Analytical analysis and managerial insights will be discussed
in Section 7. Section 8 is dedicated to the numerical experiments. Finally, we discuss the

limitations and provide future research directions in Section 9.

2 Literature review

This study relates to the literature on joint DT quotation and pricing with DT- and price-
sensitive demand. The relevant studies can be classified according to whether they consider a
single firm, with typically a centralized decision process, or multiple firms that collaborate or
compete under a decentralized decision process. We review the extant literature in both areas

while focusing on papers that consider an MTO environment.

2.1 Single firm and centralized decision process

Most of the relevant studies are based on the framework developed by Palaka et al. (1998),
where a single product is offered by the firm, the system is modeled as a single M /M /1 queue,
and the mean demand rate linearly decreases in price and guaranteed DT. So & Song (1998)
investigated a quite similar problem while using a log-linear demand model (Cobb-Douglas).
Different extensions have been investigated. Some studies consider the impact of the quoted DT
on the costs. For instance, Ray & Jewkes (2004) incorporated the economies of scale by assuming
that the unit operating cost is a convex decreasing function in the mean demand. Albana et
al. (2018) modeled the unit operating cost as a convex decreasing function in the quoted DT.
Webster (2002) assumed that the capacity (production rate) can change dynamically, which
changes the variable production cost. Li et al. (2014) analyzed the benefit yielded from demand
against the holding and tardiness penalty costs caused by the actual realized lead time being
earlier or later than the promised DT.

Another extension consists in offering substitutable products differentiated in terms of DT



and price. For instance, Boyaci & Ray (2003) considered a firm that sells two substitutable
products (a regular product with a standard DT, and an express product with a faster DT).
Each product variety is served from a different facility. The study has been extended by Boyaci
& Ray (2006) to incorporate the service level as a decision variable. Zhao et al. (2012) compared
the strategy where a firm offers a single DT and price quotation to the strategy where a firm
offers a menu of DT's and prices to customers. The substitutable products may also be offered
by competing firms, where DT and price decisions for each firm are centralized. So (2000)
studied DT- and price-based competition for service firms. Shang & Liu (2011) investigated the
problem of two firms that offer substitutable products and compete in a DT-sensitive market,
but did not consider pricing. Jayaswal & Jewkes (2016) considered a duopoly market with
price or time sensitive customers (two segments) where the firms may have different operations
strategy (shared versus dedicated capacity).

The DT quotation and pricing with inventory control has also been the focus of some
interesting works. For instance, Yang & Geunez (2007) studied continuous-review inventory
systems to maximize total profit when demand is convex in DT and price. Wu et al. (2012)
considered the news-vendor problem with price- and DT-sensitive demand where a firm orders
a semi-finished product prior to the selling season and customizes the final product in response
to customer orders during the selling season. Savasaneril & Sayin (2017) studied the relation
between inventory level and DT quotes for a manufacturer serving multiple customer classes.
Customers are sensitive to DT but pricing is not considered.

Dynamic DT quotation is another interesting extension. Savasaneril et al. (2010) studied
this problem in an M/M/1 base-stock inventory queue with DT-sensitive demand but without
considering pricing. Feng et al. (2011) studied the joint dynamic price and DT quotation
problem while modeling the system as an GI/M/1 queue. Hafizoglu et al. (2016) considered
two customer classes: contract customers whose orders are fulfilled based on a contract price
and DT agreed on at the beginning of the time horizon, and spot purchasers who arrive over
time and are quoted a pair of price and DT dynamically. Feng & Zhang (2017) investigated
the dynamic DT quotation and pricing for an MTO manufacturer who can obtain information
on individual sensitivity of each customer through negotiations with customers. Oner-Kozen
& Minner (2018) developed a Markov decision model to study the case of a firm who faces
inhomogeneous customers and makes individual price and DT quotes to control its demand and

decrease tardiness penalties. The authors compared the sequential decision process between



production and marketing to the simultaneous process. While the above studies consider a
single operation stage, Hammami et al. (2020) studied the DT quotation for a single firm that
has two operation stages under a centralized setting, but do not consider the upstream price
(since only the final price is relevant in the centralized context).

The above studies consider a single firm with a centralized decision process in most cases.
The trade-offs that govern the centralized problem are based on the overall SC performance
while ignoring the profits of individual players. Consequently, how to apply the findings of
these studies to analyze the decentralized problem where there are DT and price decisions for

each firm is not clear.

2.2 Multiple firms and decentralized decision process

A first research stream investigates the dual-channel problem where a manufacturer can sell a
product directly to the customers (direct channel) or through a retailer (indirect channel). The
demand for each channel is typically linear with substitution and depends on manufacturer’s
DT. In Hua et al. (2010), the manufacturer (acting as a leader) decides the price and quoted
DT for the direct channel, and the retailer (acting as a follower) decides its own price. Quoting
a shorter DT incurs a higher delivery cost. Modak & Kelle (2019) extended this research by
adding a stochastic exogenous demand (to the deterministic endogenous demand) and consid-
ering inventories at both manufacturer and retailer sites as additional decision variables. Xu
et al. (2012) studied the delivery channel configuration where the manufacturer can use the
direct, indirect, or both channels. Liu et al. (2019) studied a quite similar problem while as-
suming that the manufacturer provides a pay-on-delivery service directly to consumers through
its online (direct) channel. The consumers’ acceptance of a direct channel depends on the DT
decided by the manufacturer. Most of these works consider a deterministic setting. Yang et
al. (2017) proposed a news-vendor model to study the dual-channel SC where the switchover
of customers is governed by the direct channel DT and the stockouts in both direct and retail
channels. Pricing decisions were ignored. These works are different from our study as they
consider a manufacturer-retailer SC where the retailer does not have a DT. In addition, the
processing time is assumed to be deterministic in these works.

The stochastic models are more closely related to our work. We therefore review these studies
in more details. Liu et al. (2007) studied a decentralized supplier-retailer SC where the supplier,

as a leader, decides the quoted DT (to the customers) and the wholesale price (to the retailer).



The retailer, as a follower, decides the final price. Using the performance of the corresponding
centralized system as a benchmark, the authors showed that the decentralized decisions are
inefficient and lead to inferior performance due to the double marginalization effect. Pekgiin
et al. (2008) studied the centralization and decentralization of pricing and DT decisions for an
MTO firm facing a linear price- and DT-sensitive demand with either marketing or production
as the leader. The production department quotes a DT, and the marketing department quotes
a price. The authors observed, for instance, that a higher capacity results in greater flexibility
and higher profit for a centralized firm, but does not necessarily result in a higher profit for a
decentralized firm. This research has been extended by Pekgiin et al. (2017) while considering
two firms (with either marketing or production in the lead for each firm) that compete on
price and DT decisions in a common market. Under intense price competition, the authors
found that the firms may suffer from a decentralized structure. However, under intense DT
competition, a decentralized strategy with marketing in the lead can result in significantly higher
profits. Zhu (2015) considered a similar SC configuration while assuming that the supplier (as
a leader) determines the capacity and wholesale price, and the retailer (as a follower) decides
the final price and DT. The author demonstrated that the integration of capacity decisions
could significantly reduce the loss caused by the double marginalization. Xiao & Qi (2016)
considered a supplier who operates in make-to-stock (MTS) where stockout could not happen
and an MTO manufacturer. In the basic model, the supplier chooses the wholesale price, and
the manufacturer determines the resale price and the quoted DT. The authors also studied
the case where the manufacturer determines the resale price, the quoted DT, and the delivery
reliability or capacity. They investigated the coordination of the channel via an all-unit quantity
discount contract under different scenarios.

We provide in Table 1 a classification of multi-firm (decentralized) models and compare
them to our modeling framework. As shown in Table 1, the papers that studied a SC with two
independent firms assumed that the DT quoted to the final customers is equal to the DT quoted
by only one firm (upstream or downstream), whereas the other firm does not have operations
and, therefore, its lead time equals zero. This framework may be justified in case of a supplier-
retailer SC (which is the most widely studied case in the literature), but does not fit with the
case of a SC with two manufacturing firms (e.g., a manufacturer of semi-finished product and
a manufacturer of final product). We consider a more general framework where each firm has

a finite capacity, performs operations and has a lead time. Our demand is function of both



upstream and downstream DTs in addition to price. To our knowledge, this is the first study

to consider this framework. Furthermore, while most published papers assume the DT to be

controlled by the upstream firm (except Xiao & Qi 2016 and Zhu 2015), we study different

situations where the DTs can be controlled by either the upstream or the downstream.

Table 1. Classification of relevant papers on DT quotation under a decentralized setting

Capacitated Decision Lead times Pricing Demand Modeling
firms variables controlled by controlled by function framework
Liu et al. (2007) 1 lu, DPu Upstream Upstream and f(lu, Pd) M/M/l queue
Pd Downstream
Pekgiin et al. (2008) 1 lu, Pa Upstream Downstream f(lu, Pd) M/M/l queue
(production) (marketing)
Hual et al. (2010) 1 lu,pu Upstream Upstream and f(lu,pu,pd) Dual-channel
Pd Downstream (Deterministic setting)
Xu et al. (2012) 1 lu, DPu Upstream Upstream and f(lu, puapd) Dual-channel
Pd Downstream (Deterministic setting)
Zhu (2015) 1 lu, Pu Downstream Upstream and f(lu, pd> M/M/l queue
pa; Cu Downstream
Xiao & Qi (2016) 1 ld,pu Downstream Upstream and f(ld,pd, S) M/M/l queue
Pd, S Downstream
Pekgiin et al. (2017) 1 luapd Upstream Downstream f(lu,]?d) Competition
(production) (marketing) 2 M/M/l in parallel
Yang et al. (2017) 1 Ly, Gu Upstream No pricing f(lu, q,> Qd> Dual-channel
qd (Deterministic DT)
Modak & Kelle (2019) 1 lu,pu,pd Upstream Upstream and f(lu,pu,pd) Dual-channel
Qu, qd Downstream (Deterministic DT)
Liu et al. (2019) 1 lu, DPu Upstream Upstream and f(lu, puapd) Dual-channel
Pd Downstream (Deterministic setting)
Our paper 2 Ly, ld Upstream and/  Upstream and/ f(lu7 ld,pd) Tandem queue
PusPq or Downstream  or Downstream M/M/l — M/M/l

U : subscript denoting upstream firm, d: subscript denoting downstream firm, f() . function of.

l: DT, p : price, q : order quantity (inventory), C: capacity, S : service level.



3 Modeling framework

We consider a two-stage SC consisting of a supplier (henceforth referred to as upstream firm)
that represents a first manufacturing company and a buyer (henceforth referred to as down-
stream firm) that represents a second manufacturing company or a retailer. The downstream
buys the upstream product and uses it to obtain the final product that is sold to the customers.
There is an independent decision-maker for each stage. Both firms operate in an MTO set-
ting and have a finite capacity. We assume that the service (processing) time in each stage is
exponentially distributed. This assumption, widely used in the related literature (as shown in
our literature review), is reasonable in case of high processing time variability, which is com-
mon in practice. We let iy and p, denote the mean service rate in upstream and downstream
firms, respectively. As usually assumed in the related literature, the demand arrives at the
downstream stage according to a Poisson process with mean arrival rate A that decreases in the
selling price and the overall DT quoted to customers. Thus, each firm is modeled as an M /M /1
queue, and the whole SC is represented by a tandem queue M /M/1— M /M /1. We respectively
denote by wy and ws the sojourn times in upstream and downstream firms. In a tandem queue
M/M/1— M/M/1, the sojourn time in each stage is exponentially distributed with mean ﬁ

and respectively. The sojourn time in the whole SC is given by w; + ws.

ey

We denote by [; and Iy the local DTs in the upstream and downstream firms, respectively.
The DT quoted to the customers is the overall DT of the SC, which is given by [ = [3 + .
Both firms know the minimum service level s that must be guaranteed by the whole SC, and
each firm tries to satisfy this service level locally. Thus, the probability of satisfying the local
DT in each stage must not be smaller than s, i.e., Pr(w; <l1) > s and Pr(ws <l3) > s. In this
case, if s > 0.715 (which is the common situation in practice), then the whole SC can quote the
overall DT [ = I; + I3 to the customers while guaranteeing the minimum service level s (i.e.,
Pr(w; + wg < 1) > s). The proof is out of the scope of this paper; it can be found in (Albana
2018). In our model, both stages target the same service level s locally in order to guarantee
that the whole SC can quote the DT [ to customers while satisfying s. This implicitly assumes
that there is no negotiation and coordination between the firms in the sense that one of them
accepts to set a higher service level in order to allow the other company to target a lower service

level while satisfying the service level s globally. This assumption is acceptable for two main

reasons. First, for many companies, the service levels are viewed as constraints to be satisfied



and not as decision variables to be optimized. It is therefore possible that companies target the
same service level, especially when they are independent (as considered in our problem) and
operate in the same sector (such as in clinical diagnostics and industrial microbiology, a sector
where many companies target a service level of 97%, as highlighted by our industrial partner
Biomérieux). Second, increasing (respectively, decreasing) the service level of one stage means
that we impose a tougher (respectively, weaker) constraint for that stage. This can be captured
in our models by varying the capacity u,; since we consider that each firm may have a different
capacity.

We let p1 denote the selling price of upstream product (i.e., purchasing price for the down-
stream), and p2 denotes the downstream price (i.e., price of the final product sold to customers).
For ease of presentation, we use p and po alternatively to refer to the downstream price. We
model the mean demand rate A as a linearly decreasing function in the guaranteed DT [ and
price p of the final product. Thus, A = a — ap — 8l = a — aps — B(l1 + l2), where a is the
market potential, « is the price-sensitivity of demand, and [ is the DT-sensitivity. It is recalled
that most related works assume linear demand functions. The unit margin for upstream and
downstream firms is denoted by d; and Js, respectively, and § = 1 + d2.We denote by m; and
mg the operating (production) cost per unit of product in upstream and downstream firms,
respectively, and m = mj + ms. Therefore, §; = p1— my and d3 = ps — p1 — meo. The studied

system is illustrated in Figure 1.

Price p; | Price p, Demand Rate
f Lead Time [; Lead Time [, A=a—ap, — Bl + 1)
I |
1 I
| |
| Upstream Downstream I
I |
I |
B e = = = Bl Bl e T — Bl Bl — B e e = B = = R ¥
Order

Figure 1. Modeling framework
Each firm undertakes DT and/or price decisions to maximize its local profit. We assume
that each firm has a full information about the capacity of the other stage. As explained earlier,
three decision settings will be studied in this paper. In Sections 4, 5 and 6, we respectively

motivate each setting and develop the corresponding model and the analytical analysis.



4 Downstream controls lead times and each firm decides its
price

In this first setting, the downstream, acting as a leader, decides its price py and controls both
DTs Iy and I, and the upstream, acting as a follower, reacts by deciding its own price p;. This
decision scenario is motivated by practical situations in SCs where the downstream firm (manu-
facturer or assembler) has much more power than the upstream firm (supplier of a component or
a semi-finished product) and can, therefore, control the upstream DT. Kraiselburd et al. (2010)
state that "in some SC relationships, there are downstream parties with the power to impose
lead times reduction on their suppliers. For example, in automotive SCs, manufacturers have,
to a certain extent, the ability to enforce short supply lead times”. Magnusson & Simonsson
(2012) reports that Molnlycke Health Care (MHC), a world leading manufacturer of single-use
surgical and wound care products adopted a new procurement strategy within the Surgical di-
vision stating that no suppliers should have a lead time that exceeds a certain number of weeks,
which clearly means that MHC imposes DT's to the suppliers. Other practical examples can be
found in the retail industry. Bose & Layne (2016) explain how some big retailers are getting
tough with vendors to speed up the SC. The authors report that " Target, the sizth-largest U.S.
retailer by sales plans to tighten deadlines for deliveries to its warehouses" and " Wal-Mart is
also cutting the window for deliveries to within one to two days of a target date, depending
on the product category, from one to four days previously”. The case where the downstream
controls the DT of the upstream firm has been considered by Zhu (2015) in the retail context,
but the authors do not consider the downstream DT (see Table 1).

The formulation of both upstream and downstream models is provided below. Note that
p2 = p1 + ma + 2. Hence, choosing ps for the downstream is equivalent to choosing d5. The
objective functions (1) and (5) respectively maximize the expected local profit for upstream
and downstream firms. Equations (2) and (6) give the mean demand rate A. Each firm must
satisfy the service level s, implying that Pr(w; < 1) > s and Pr(wy < l3) > s in upstream
and downstream models, respectively. These service constraints are respectively expressed by
constraints (3) and (7) since the sojourn time in an M/M /1 queue is exponentially distributed.
It is noted that the service constraint at each firm depends not only on the local DT of this stage
but also the DT of the other stage (since A depends on both I3 and l2). This situation makes the

solving approach more complicated. Finally, constraints (4) and (8), respectively, guarantee a



positive demand in upstream and downstream models. Notice that the steady-state conditions
in each stage (i.e., A < p; and \ < po for upstream and downstream stages, respectively) are
automatically satisfied if the service constraints (i.e., constraints (3) and (7), respectively) are
satisfied. Since the service constraints are included in the model, we can remove the steady-state
conditions without any impact on the model formulation and optimization (see Palaka et al.
1998, Pekgiin et al. 2008, Albana et al. 2018).

Upstream model:

(M1.1) Maxirglgze I (p1) = (p1 — ma)A (1)

p1>
Subject to A =a — a(p1 +mg + d2) — B(l1 + I2) (2)
1 — e~ (=N > s (3)
A>0 (4)

Downstream model:

(M1.2) Méa;ﬁ%gg I5(02,11,12) = 2\ (5)
Subject to A =a — a(p1 +ma + d2) — B(l1 + l2) (6)
1— e Nl > (7)
A>0 (8)

We solve the problem backward. It is first noted that the service constraint (3) is not
necessarily binding. The upstream may have an interest in setting a higher price than the one
obtained when 1 — e~ (#1=Vl — g which implies a non-binding situation (i.e., 1 — e~ (m=Mh 5 g
at optimality). These binding and non-binding cases require different analytical analyses. In
Lemma 1, we characterize the binding condition for the upstream model and determine the
optimal upstream price in function of downstream decisions. To simplify the notation, we let

z=1In (ﬁ) . All proofs are presented in the Appendix.

Lemma 1 For given 02, l; and la, the optimal upstream price is p] = max(p’lg,p{VB), where

2y ta—a(a+me)—Bitle) , o .
-pP =4 ozl 2& ma)”HlHe) 1s the optimal price in binding situation, and




-plVB = “7a(52+m252”)75(11+l2) is the optimal price in non-binding situation.

The service constraint in the upstream model is binding (i.e., pjlg > p{VB) if, and only if, the

DTs ly and ly and the margin §o decided by the downstream verify
BI2 — (a — a6y 4+m) — 2y — Blo) 11 — 22 <0 (9)

After obtaining the expression of p} in function of downstream decisions (d2, I; and l3), we
can now consider the downstream model. We first focus on the service constraint and derive

the following result.

Lemma 2 Whether or not the service constraint in the upstream model is binding, the service
constraint in the downstream model is always binding, implying that A = py — & = a — ap1 +

l2

mg + 02) — B(l1 + l2) at optimality.

In each of the binding and non-binding situations for the upstream model, we can now use
the results of Lemma 1 and 2 to obtain the expression of the optimal DT [y and optimal price

p1 for given d2 and ;. The result is presented in Lemma 3.

Lemma 3 If service constraint in the upstream model is binding, then we have at optimality

(for given 62 and Iy ):

z _ o z
0 p1t+a—a(d2+mo) ﬁ(ll+%7ﬂl+ﬂ2)
lo==—%—, p = 1 and A\ = puy — £.
A — iy’ o ’ 1 1

If service constraint in the upstream model is not binding, then we have at optimality ( for

given 0o and 1y ):

l2 . afa(52+m)fﬁl172,u2+\/(a7a(62+m)7,8l172y2)2+8,82
= 53 ,

D= a—a(62+m2—3m1)—,8l1+2u2—\/(a—a(62+m)—611—2u2)2+85z
- 4o ’

N = a—a(ég+m)—,8l1+2u2—\/(a—a(52+m)—6[1—2/12)2-1—852'
= 1 .

and

Based on the above results, we replace p; and lo with their optimal values for given §2 and
l; and deduce that the downstream has to solve the following model (note that we must have

lh> “il since, otherwise, the upstream model cannot be feasible).



115 (82, 11) = &2 (/h - ﬁ) ;

if 02 and [y satisfy the binding condition in upstream model

Maximize Ils(ds,l1) =
52%}631;111;% 2(02,11) HéVB(ch,ll) = 3§ <a—a(52+m)—511+2M2—\/(a4—04(52+m)—Bll—2M2)2+852)

)

if §o and [y satisfy the non-binding condition in upstream model
(10)

It is recalled that the binding condition in the upstream model is given in (9) (see Lemma
1). We replace lp with its expression in the binding situation (given in Lemma 3) and deduce by
standard calculus that the service constraint in the upstream model is binding if, and only if, p; —

Z < a—a(52+m)—,6’l1+2u2—\/(a—o¢(62+m)—511—2u2)2+862
L = 4

. This condition is equivalent to T1F(d2,1;) <
Y B(59,11). For given &, it can easily be verified that IIZ(l;) is increasing in Iy, whereas
Y B(l1) is decreasing. In addition, Hf(fl) < HéVB(uil), and lllirwaZB(ll) > lllirfooHéVB(ll)'
Hence, there is a unique value of I; such that I1Z(I1) = 1Y B (11), and we have I 5 (1) > 12 (1)
before this intersection point and Y3 (1;) < TIZ(11) after it. This is illustrated in Figure 2 given
in the appendix.

Consequently, for given dy, the downstream profit IIy(l;) is given by IIZ(l1) before the
intersection point and by II3'P(l;) after the intersection point. Moreover, given that II5(l;)
is increasing in 1 and I13'P(l;) is decreasing, the optimal DT I} (for given dJs) corresponds

to the intersection point between the curve of IZ(l1) and TP (l;). Therefore, we finally

deduce that we have IIP(I;) = TIYB(l;) at optimality, which is equivalent to u; — r =

a—a(62+m)—511+2u2—\/(a—a(éz—l—m)—ﬁll—2;12)2—1—852'
4

. We show by standard calculus that this equation

is equivalent to the following one.

1
52 =~ a—/jll—L—2<ul—lﬁ> —m (11)
(Mz—ﬂl‘*‘ﬁ) 1

The above equation gives do in function of /; at optimality. Thus, the downstream model is

equivalent to the following one.

—H1

1
Maximize Ily(l1) = <,u1 - ;) —la—pBlL — __pz 2 <,u1 - ;) —m| (12)
hu e (Mz — Hy + ﬁ) !

Notice that we can also replace the different variables with their expressions in function of



1 and deduce the upstream profit II; and the overall profit Ilo = II; 4 Il as given below.

(67

1) = 7 (1 - %)2 (13)

Ha(h) = 2 (ul—i) a—ﬁll—ﬁ—(ul - Z)—am (14)

@ h 2~ Mt T
Given the complexity of the expression of IIz(l1), it is not possible to obtain the closed-form

expression of [7. We describe the optimal strategy in the following proposition.
Proposition 1 Optimal solution under setting 1.
o Optimal delivery time ] is obtained by mazimizing
(ul - ﬁ) [% (a—/jll — W -2 (,ul — ﬁ)) —m] over [Mil,—i-oo[.

. . . x zly
e Optimal delivery time l5 = —]—ZJr(urul)lI'

—
i N

)+

e Optimal upstream margin 0] = é (/Ll — %), and optimal upstream price p] = é (,ul —

mai.

Bz
N2_M1+%

£

)_2(N1_1T

o Optimal downstream margin d5 = é a— Bl — ( ) —m, and op-

timal downstream price p5 = é a— Bl — — 8 (:U’l — ﬁ)

(Hz*#l +%>

5 Downstream controls prices and each firm decides its lead
time

Bertini & Koenigsberg (2014) identify three general philosophies to pricing: company-imposed
pricing, collaborative pricing and customer-imposed pricing. According to the authors, under
customer-imposed pricing, "the company delegates responsibility for pricing to the customer’.
In B2B, customers may have aggressive purchasing strategies which finally lead to imposing
prices to suppliers. Examples can be found in the automotive industry where some powerful
automakers impose price reductions to their suppliers on a regular basis. One of the authors of
this paper, who has been working as a purchasing manager in the automotive sector, reports the

example of a manufacturer of automotive components who outsources the production of some



plastic parts. The manufacturer provides its supplier with the mold, but then imposes the price
of the product to the supplier. In this second setting, we consider the case of customer-imposed
pricing. Thus, the downstream, acting, as a leader, decides its DT I3 and controls prices p1
and ps. The upstream reacts by choosing its own DT [;. The obvious limitation of this pricing
strategy is that the downstream may be tempted to undermine the upstream with unreasonably
low prices, which will not be acceptable. One way companies can mitigate this risk is to set
a price floor (Bertini & Koenigsberg 2014). Hence, to prevent the downstream from imposing
unreasonable prices, we consider here that the unitary upstream margin (i.e., p; — my) cannot
be smaller than a minimum value denoted by 5r1nm. Thus, although the downstream firm decides
the prices, it must respect the minimum price required by the upstream. The margin floor 67"
can be negotiated beforehand between both parties. The value of 6T may reflect the power of
each firm in the SC. As (5r1nin would influence the optimal strategies and profits, we will conduct
a sensitivity analysis to understand its effect.

Since py = p1 + Mg + da, the constraint p; — my > 53““1 is equivalent to po > m + 9 + 53“in.
The formulation of the upstream and downstream models is given below. We recall that the
steady-state conditions can be removed from the analysis as explained earlier. To simplify the
presentation and analysis of the problem, the downstream model (M2.2) provided here is an
equivalent formulation of the original model, obtained by replacing py with p; 4+ mso + ds.

Upstream model:

(M2.1) Ma:;dg(l)ize (1) = (p1 — ma1)A (15)
1-Y,
Subject to A =a — a(p1 +ma + 02) — B(l1 + 12) (16)
1—e m=h > (17)
A>0 (18)

Downstream model:



(M2.2) Maximize . Hz(lz, 52,]91) = 52)\ (19)
0220, 1220, p1 >my+o7""

Subject to A =a — a(p1 +ma + d2) — B(l1 + l2) (20)
1— e (=Nl > (21)
A>0 (22)

We solve the problem by backward induction. We first assume that 3, 2 and p; are given
and solve the upstream model to obtain [y in function of I, ds and p; at optimality. We then
replace [ in the downstream model with its optimal expression and solve the latter model.

Upstream model (M2.1).

Service constraint (17) is equivalent to {1 > ulz— - We replace A with its expression given in

equation (16) and deduce that constraint (17) is equivalent to ®(I;) > 0, where ®(l;) = BI? —

(a — a(p1 + mg + 62) — Bla — py) l1 — 2. It can be verified that the quadratic equation ®(I;) = 0

a—a(p1+ma+02)—Bla—py +/(a—alp1+ma+62)—Bla—py )2 +4B2
28

®(l1) > 0 & I3 > ™", Moreover, A > 0 < [} < [8%X = a—oc(pl—l—rréz—i—&g)—ﬁlz‘ Hence, for given

has only one positive root, l‘f‘in = , and that

l2, 92, and p1, model (M2.1) is equivalent to the following model.

Maxilrlnize I (lh) = (p1 — ma) (@ — a(p1 + ma + d2) — B(l1 + 12)) (23)

Subject to It < [y < [jnax (24)

It is clear that IT; (I1) is decreasing in l;. Therefore, the upstream will choose the shortest DT
while satisfying the constraints, which implies that I; = I!*® at optimality. Thus, the optimal
upstream DT is given by equation (25). This also means that the service constraint in the

upstream model is binding and A = py — ﬁ at optimality.

I a — a(p1 +ma +d2) — Blo — py +/(a — alpy +ma +d2) — Bly — 11y)* + 482 o5
1= % (25)

Furthermore, we need to ensure that downstream’s decisions must also satisfy [fn < [iax

since, otherwise, the upstream model is not feasible (i.e., it is not possible to quote a DT



that simultaneously satisfies the service constraint and guarantees a positive demand). This
condition is equivalent to constraint (26) given below. This constraint must be added to the
downstream model.

a—oalpr+ma+02) 2

l - — 26
2 < 3 m (26)

Downstream model (M2.2).
We now focus on the downstream model. Model (M2.2) is challenging since A depends not
only on I3, 95 and p; but also [;, which has been expressed in function of ls, §2 and p; in equation

(25). To simplify the formulation of model (M2.2), we first derive the following Lemma.

Lemma 4 Service constraint in the downstream model is binding (i.e., X\ = jqy — 7 at optimal-

ity).

According to Lemma 4, we have A = py — % at optimality. Therefore, we can replace A with

p2 — 7;- Equation (20) becomes equivalent to puy — = = a — a(p1 +ma +d2) — B(l1 +12). In this

l2

equation, we replace [y with its expression at optimality and obtain by standard calculus the
price pi in function of d2 and Is.

1 z Bz
——{a—a® P A — 27
D1 a(a a(d2 + mg) — Bla u2+l2 ﬁ—ﬂz‘f‘/h) (27)

Remark 1 If py > py, then py is not continuous at the point lo = Mzi/h (for given 02), as

illustrated in Figure 8 (see the appendix). However, this discontinuity does not impact our

analysis since only the region [i £

1 T [ is relevant to our study (see the appendiz).

We now use the above results to provide an equivalent formulation of model (M2.2). It is

z

noted that A > 0 is equivalent to Iy > i and constraint (26) must be added to guarantee the

feasibility of the upstream model. Hence, model (A2.2) is equivalent to the following model.



Maximize IIs(la, 62, p1) = d2 <M2 - i) (28)

120,650, p1 >my +5in B
. 1 z Bz
Subject to p1 =— | a—a(d2+mg) — Blo — pig + — — ——— (29)
a o &=t
— )
pelzolmtmatdy) = (30)
B H1
z z . z )
I € [—, [ if uy > py and g € {—,+oo[ if py < pyg (31)
Ko Mo — H1 Ha

For given o, Il5 is clearly increasing in ls. Therefore, the downstream will try to increase [s.

However, this act will lead to decreasing p; (since %l;’lz) = %1 (5 + é + m%) < 0),

which cannot be smaller than m; +67®. When p; is at its lowest possible value (i.e., p; = m1 +

a—a(m40Pn453) 4
B

ST we deduce from constraint (30) that l; must be smaller than [@* = ™

(we recall that m = m; 4 my). Thus, if p; reaches my + 67 before I reaches 5% (which is
mathematically equivalent to p1(Ja, I9*¥) < my + 61%), then pi = my + %" since, on the one
hand, this solution is feasible and, on the other hand, it is not possible to increase Iy again. One

remark is in order here.

Remark 2 The case p1 (2, [F¥) > my + 61" is not relevant to our study as it cannot generate

profit (see Appendix).

We, therefore, focus on the relevant case; that is, when pq(d2, (5**) < my 46T Tn this case,
we have p] = my + 5‘f‘in. In other words, the minimum margin required by the upstream will
be its effective margin at optimality. Hence, on the one hand, p; is given by equation (29) and,
on the other hand, we have p; = m; + §™" at optimality. Therefore, we deduce d in function

of Iy at optimality as given in equation (32).

(12 — 1) B + (42 — 1) (g — a+ a(m 4+ 8™)) = 282) I3 + (11 — 22 + a — a(m + 67™)) 2ly + 22

8o =
? a(z— (g — 1) o)l

(32)
We replace p; and do with their expressions at optimality and finally deduce that model

(M2.2) is equivalent to the following single-variable optimization model.



pe— T (112 = 1) B + ((Hg — 1) (12 — a+ a(m + &™) — 2682) 13

Maxilmize Iy (le) =
2

O{(Z - (/’LQ - /’l’l) l2) l2 + (/‘LI _ 2/*1’2 +a— &(m + 5311111)) ZZQ + 252
Subject to Iy € [i, [ if pg > py and lp € {i,+oo[ if py < iy (33)
Ko [ — U1 Ha

Notice that we can also replace the different variables with their expressions in function of
lo and deduce the upstream profit II; and the overall profit of the SC Il = II; 4 Il as given

below.
z

(1) = 57" (1o = ) (34)

He(la) = (py — — o
Gl2) =\ Kz lo (Hz*#l)rBngr((Hz*H1)(Hz*a+a(m+5ﬁnin))*25'z)l§+(ﬂ1 *2H2+a*a(m+5ﬁnin))2[2+z2
az—(pg—p)l2)l2

(35)
We finally provide the optimal strategy in the following proposition.
Proposition 2 Optimal solution under setting 2.
o Optimal delivery time 5 is obtained by mazimizing
2 (o) BB (2 =) (pa —ata(m+671™) —282) 134 (g —2up +a—a(m+57™) ) 2lp+22 over | = =z
H2 =1, a(z—(pg—p1)l2)l2 o Ho—H1

and [Miz’ +o0 [for o > iy and iy < py, Tespectively.

X
2135

e Optimal delivery time I§ = P i

e Optimal upstream margin §] = 5’1nin, and optimal upstream price p; = my + 5imn.

e Optimal downstream margin

, and optimal

5% — (12— 110) BUE 3+ (12— 1) (B —a+a(m+0T)) =282 ) 152+ 1y —2pp+-a—a(m+87") ) 215 422
2 a(z—(na—m)13)13
downstream price
(12 =1) BUS3+ (12— 1) (ng —a+a(m+8T7)) =282 ) 152+ (1y —2pp+-a—a(m+57") ) 215 422
a(Z*(H2*N1)l§)l§ )

Py =m + 5P 4

6 Upstream controls lead times and each firm decides its price

Some SCs are controlled by the upstream firm who may have more power than the downstream
firm. Examples of powerful suppliers can be found in internet retailing (see Liu et al. 2007).

Most related works on DT quotation with independent firms consider a supplier-retailer SC



dominated by the supplier and where the retailer just has a pricing role (see Table 1). When
a big manufacturer has an exclusive distributor who just customizes the product and deliver
it to the customers, the operational decisions, including lead times, may be controlled by the
supplier. This section investigates the case where the upstream, acting as a leader, decides its
price p1 and control DTs [; and lo, and the downstream reacts by deciding its own price po
(which is equivalent to deciding the unit margin d2). The formulation of the models is given
below. We recall that the steady-state conditions can be removed from the analysis as explained
earlier.

Upstream model:

(M3.1) p}\gaﬁilgl&zgzoﬂl(pl, l,l2) = (p1 — ma)A (36)
Subject to A =a — a(p1 + m2 + d2) — B(l1 + l2) (37)
1—e =N > (38)

A>0 (39)

Downstream model:

(M3.2) Ma)gizgléze II3(d2) = d2A (40)
Subject to A =a — a(p1 +m2 + d2) — B(l1 + l2) (41)
1—e (Nl > (42)

A>0 (43)

We use the same solving methodology as setting 1. Thus, to avoid redundancy, we provide
the different solving steps in the appendix. We obtain the following equivalent formulation of

upstream model in function of ls.

1
Maximize II;(l2) = <,u2 — ;) —|a—pla— _p 2 <,u2 — l_> —m| (44)
2235 2/ |« (M — o + %) 2

g



Notice that we can also replace the different variables with their expressions in function of

lo and deduce the downstream profit IIs and the overall profit Il; as given below.

Mg () = ~ <u2 3) [ — Bly — Mﬁ— (g — =) — am] (46)

T b 1—N2+ﬁ_

We provide the optimal strategy in the following proposition.

Proposition 3 Optimal solution under setting 3.

Optimal delivery time 15 is obtained by mazimizing

(uQ—%> [% (a—ﬁlg—ﬁ—Z(@—%)) —m] over [/%,—I-oo[.

. . . x zl3
Optimal delivery time [T = —2—(“17“2”;“.

Optimal upstream margin 6] = é a— By — ( ) -2 (/LQ — i) —m, and opti-

H1 *Ner%

mal upstream price p} = é a— Bl5 — (—L> -2 (,u2 — é) — meo.

p1—potiE
2

1

Optimal downstream margin 05 = = (,u2 — i) , and optimal downstream price

p=tla-pl - —E—= - (%)
(H1*H2+g>

7 Managerial insights

Based on the optimal solutions obtained in the previous sections, we now derive managerial
insights into the interplay between local DTs, overall DT, prices, demand and profits. The

main results are presented in a series of corollaries. All proofs are given in the appendix.

Corollary 1 Under all settings, all DTs are positively correlated. Hence, the shorter the DT
quoted by one firm, the shorter the DT quoted by the other firm and, consequently, the shorter
the overall DT quoted by the SC.

However, the upstream and the downstream prices are not always positively correlated.



It is first important to note that while local DTs (i.e., upstream and downstream DTs)
are sensitive to market characteristics and production costs, the relation between these DT's

depends only on service level and capacities (since we have in all settings { at

_ zlo
L= Ta—n)latz
optimality). In particular, both firms will quote the same DT (I; = l9) if they have the same
capacity. Corollary 1 shows that the local DTs are positively correlated whatever the decision
scenario. Therefore, a firm will always decrease (respectively, increase) its DT if the other firm
decreases (respectively, increases) its own DT. Practically, this means that the lead time efforts
of both firms must always be done in the same direction. The case where one firm decreases its
DT whereas the other firm increases its own DT should not occur in practice. This result also
means that quoting a shorter (respectively, a longer) DT to final customers requires that both
firms quote a shorter (respectively, a longer) DT locally.

Liu et al. (2007) and Xiao & Qi (2016) considered a two-stage decentralized SC where
only one firm undertakes operations and has a DT (see Table 1). These works, which are
closely related to our study, showed that the upstream and downstream prices are positively
correlated (i.e., when one price increases, the other price also increases at optimality). Our
study reveals that this result does not always hold if both firms have operations and DTs.
In fact, Corollary 1 demonstrates that the relation between upstream and downstream prices
depends on the decision scenario. Under setting 1, for instance, a longer DT leads the upstream
price to increase and the downstream price to decrease. Under setting 2, the upstream price is
constant at optimality while the downstream price is a complex function of DT (we can easily
show that this function decreases in DT when p; = py ). Under setting 3, both upstream and
downstream prices decrease in quoted DT as found by Liu et al. (2007) and Xiao & Qi (2016).
This means that the consideration of both DTs (instead of only one DT) changes the trade-offs
that govern the pricing decisions. Therefore, it may be sub-optimal for firms to make pricing
efforts in the same direction as shown in the literature. Our study shows that adopting opposite
pricing strategies may be the optimal strategy. We now investigate the relation between DTs

and demand.

Corollary 2 Under all settings, the longer the quoted DT (in any stage of the SC), the larger

the expected demand.

The fact that quoting a longer DT leads to a higher demand is a surprising but known result

in the literature with single operation stage (see e.g., Liu et al. 2007, Xiao & Qi 2016, Albana



et al. 2018). The reason is that a longer DT allows to serve more demand without violating
the service constraint which leads to decreasing the price in order to increasing demand. We
generalize this result by showing that it also holds when each firm has a DT. Since [ is positively
correlated with /; and [y (as demonstrated in Corollary 1), any local or global increase in DT
implies a greater demand, but this does not necessarily generate a higher profit, as will be

discussed in Corollary 3.

Corollary 3 Under all settings, the follower’s expected profit increases in quoted DT (in any
stage of the SC) and therefore increases in mean demand, whereas the SC leader’s expected profit

18 a concave function in quoted DT and in mean demand.

To illustrate the above result, we consider the first setting and represent in Figures 4 and 5
the profits I1;, II, and the overall SC profit Ilg = II; 4+1Il5 in function of /; in the cases of ; =
e = 20 and pq = 15 and py = 30, respectively. We consider a basic numerical example with
a=280,a=05,0=>5 mi =ms =4, and s = 0.95. Using the same numerical example, we also
provide illustrations for settings 2 and 3 in Figures 6 and 7, respectively. We see in all cases
how the follower’s expected profit increases in quoted DT while the SC leader’s expected profit
is a concave function. Note that since all DTs are positively correlated, a profit that increases

in one of them (e.g., [1) also increases in the others (I3 and [).
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We first focus on setting 1. We see that [} is the DT that maximizes II(l1), but this DT
does not maximize II;({1) and IIg(l;). The upstream would have preferred that the SC quotes
a longer DT as its profit is increasing in [1, but /1 is decided by the downstream, who aims only
to maximizing its own profit. The upstream would have made more profit if the downstream
requires a longer DT [; (than [}) because this not only leads to a higher demand, but also
allows the upstream to set a higher price p;. The decrease in final price py (resulting from
quoting a longer DT) is therefore due to the decrease in downstream margin ds. This results in
a downstream profit that is concave in DT. Thus, the downstream should first increase the DT
to obtain a profitable demand although this incurs a lower margin but, after a threshold value,
the DT becomes too long and the margin too small. Consequently, it becomes more profitable
for the downstream to capitalize on increasing its margin rather than increasing demand. In
summary, the upstream has interest in offering the final product to customers with the longest
overall DT (1), but this incurs the smallest margin for the downstream, whose optimal strategy
is a trade-off between: (1) increasing its margin by quoting a shorter DT, but this leads to a
higher final price which incurs a lower demand, and (2) generating a higher demand by quoting
a longer overall DT, but this leads to a smaller margin. As demand increases in DT (as shown
in Corollary 2), the above analysis also implies that the upstream (follower) profit increases
in demand while the downstream (leader) profit is a concave function in demand. This result
is interesting as it differs from the findings of Liu et al. (2007) and Xiao & Qi (2016) where
the profits of both firms increase in demand. Thus, while these studies suggest that increasing
demand is profitable for both firms, our findings indicate that only the follower has always

interest in increasing demand whereas the leader should find the right balance between demand

T
0.18



and price (since its profit decreases when demand becomes too large). As stated in the corollary
and illustrated in Figures 6 and 7, this behavior is common to all our settings.

We now provide some specific results. First, we compare the outcomes of setting 1, in terms
of final product characteristics and optimal profits, to the results obtained under setting 3. The

main insight is given in the following corollary.

Corollary 4 Consider the optimal strateqy obtained under setting 1 when upstream and down-
stream stages have respectively the capacities (v and piy.

Setting 3 leads to offering the final product to customers with the same DT and price as
setting 1 if the upstream and downstream stages swap their capacities (i.e., if upstream and
downstream stages have the capacities 115 and i, respectively). In this case (i.e., when capacities
are swapped), the upstream and downstream optimal profits are also swapped and we obtain the

same overall SC profit.

To illustrate, we compare the optimal solutions and profits of settings 1 and 3 for our basic

numerical example with different capacities. The results are presented in Table 2.

Table 2. Setting 3 vs. Setting 1

Bl opy| m| m| Tg
[y = py = 20 Setting 1 | 0.27 | 0.27 | 13.68 | 15.83 | 34.71 | 50.54
[y = py = 20 Setting 3 | 0.27 | 0.27 | 13.68 | 34.71 | 15.83 | 50.54

=10 and py = 50 | Setting 1 | 0.88 | 0.07 | 13.72 | 8.75 | 29.11 | 37.85

pq = 50 and py = 10 | Setting 3 | 0.07 | 0.88 | 13.72 | 29.11 | 8.75 | 37.85

=50 and py = 10 | Setting 1 | 0.07 | 1.05 | 13.45 | 10.23 | 28.73 | 38.96

=10 and py = 50 | Setting 3 | 1.05 | 0.07 | 13.45 | 28.73 | 10.23 | 38.96

Most related papers study the case where only the firm that makes operations is the SC
leader (see Table 1). We investigate cases where the leader can be either the downstream or
the upstream and reveal an important finding that may be deduced from Corollary 4. Indeed,
in case of balanced capacity (i.e., same capacity for both firms), the SC will make the same
overall profit regardless of the firm who will decide the DT's and act as a leader. This result has
also a practical interest for the final customers. It shows that the customers will be offered the
product with the same price and DT regardless of the firm who will decide the DTs and act as

a leader.



In setting 2, 6™ plays an important role. We recall that 6™ is the minimum margin
required by the upstream and, therefore, represents the power of the upstream firm in the SC.
The greater the value of (5r1nm, the more powerful the upstream. We have demonstrated that
p] =mq + 5‘1’[11“. It is thus clear that this setting does not favor the upstream if the latter does
not have the power to impose a reasonable margin. We represent in Figure 8 the optimal profits

1, 113 and II% in function of §7™ in the case of j; = py. We see that II} is concave in 67",
whereas II3 is decreasing in (5’1‘11“ as expected. If the upstream has the power to increase (ﬁmn,
then the downstream will quote a shorter DT, which leads to a lower demand. Moreover, the
optimal downstream margin decreases. This leads to a lower downstream profit. The optimal
upstream profit first increases (since 67" increases) and then the demand becomes too small,
which decreases the optimal upstream profit. It is also important to note that the overall SC
profit ITf, decreases in 6" (IIZ is at the maximum when 67" = 0). This is consistent with the
findings of the literature. Xiao & Qi (2016) highlight that when the unit wholesale price equals
the unit production cost (i.e., 6T = 0 in our case), the decentralized channel is equivalent to

the centralized channel.
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Figure 8. Optimal profits in function of J®

8 Numerical study

Since closed-from expressions for the expected profits are not obtainable, we perform numer-
ical analysis to gain further insights on SC performance and coordination. We first compare
the performances of the different decentralized settings to the centralized case (i.e., when all
decisions are undertaken simultaneously by a single decision maker) to investigate the quality

of SC coordination in each case. The centralized model is solved numerically with the SLSQP



optimizer. The optimal overall profit obtained under a centralized setting is denoted by IIF,.
Clearly, the centralized setting gives the highest overall profit that can be generated by the SC.
We let 117, denote the overall SC profit obtained at optimality in the decentralized case. In case
of setting 1, for instance, II7, is the overall profit obtained with [ = I} (see Figures 4 and 5 for
illustration). For each setting ¢, we evaluate the profit gap between IIf, and IIf, by calculating
Gap(i)n*c/na = LH*C;E:LC;XIOO. Clearly, the smaller the value of Gap(i)n*c/né, the better the SC

coordination is. We use the test cases generated according to Table 3.

Table 3. Test cases

Parameter | Values

a [50,100] with a step of 10
o [1,5] with a step of 1

I6] [1,5] with a step of 1

my [1,4] with a step of 1

ma [1,4] with a step of 1

oy [10,60] with a step of 10
fo [10,60] with a step of 10
Sipin fixed to 2

s fixed to 95%

We present the results in Table 4 for each of the following test scenarios: p; = po, 1 < iy
and p; > py. Note that the number of feasible instances varies from one setting to another
since specific conditions should be satisfied for each setting to avoid non-realistic solutions as
explained in the analytical solving approach. To confirm the interest of our numerical results,
we provide the confidence interval which is calculated based on a confidence level of 95%. We
can see that the confidence interval is relatively narrow, which means that our estimation of the

mean gap is precise.



Table 4. Estimation of Gap(i)n, /m,

Mean (%) | Std. deviation | Confidence interval | Feasible cases
[y = py | 16.87 9.42 (16.71, 17.02) 14360
Setting 1 | g < po | 12.75 9.66 (12.64, 12.85) 33439
[y > i | 13.76 9.48 (13.65, 13.86) 33439
[y = 1t | 2.06 5.65 (1.97, 2.15) 14375
Setting 2 | py < pg | 9.60 25.05 (9.34, 9.86) 35945
[y > pg | 1.63 4.65 (1.58, 1.68) 35930
[y = i | 16.87 9.42 (16.71, 17.02) 14360
Setting 3 | py < po | 13.76 9.48 (13.65, 13.86) 33439
[y > p | 12,75 9.66 (12.64, 12.85) 33439

We first recall that settings 1 and 3 lead to the same overall profit when both firms swap
their capacities (as demonstrated in Corollary 4). This explains why Gap(l)n*c i, for puy < pig
equals Gap(B)H*c /I, for p1; > po. In particular, for py = py, we have demonstrated that settings
1 and 3 lead to the same overall profit and are therefore equivalent in terms of SC coordination.
It is therefore expected, for p; = py, that Gap(1)m, /mz, = Gap(3)my, /mz, as shown in Table 4.
The numerical analysis quantifies this profit gap and shows that it equals 16.87% on average (for
p1 = o). It is also interesting to note that Gap(1)m:,/mz, and Gap(3)my,/mz, reach the lowest
average value when the SC leader has more capacity than the follower (i.e., when p; < pq for
setting 1 and p; > uy for setting 3). A higher capacity motivates the leader to decide the
DTs in a way that favors a higher demand over a higher unit margin, which also benefits to
the upstream (as explained earlier) and increases the overall SC profit. While the choice of the
SC leader in most related works is justified by market conditions (e.g., a powerful retailer), our
results suggest that choosing the SC leader based on operational characteristics (i.e., production
capacity allocated by each firm) can be used to achieve a better coordination of the SC. This

result is formulated in Observation 1.

Observation 1. When the SC leader controls the DTs and each firm decides its own price,
selecting the firm with the largest capacity to act as a leader can generally improve the SC

coordination.

Furthermore, we see that Gap(2)m;, /mrz, is much smaller than Gap(1)m, /mrz, and Gap(3)z, /mz,

in all cases. This means that setting 2 leads to a better coordination of the SC. The reason is that



the double marginalization effect, which is known to reduce the overall profit in decentralized
SCs (see e.g. Lee et al. 2000), has here a small impact since the prices are controlled by the
downstream, and the upstream firm cannot impose a high margin. We extended the experiments
with other values of 8" ranging from 1 to 7 and found that setting 2 still effectively coordinate
the SC for realistic values of §™™ relative the unit production cost. However, for very high
values of S (e.g., 0™ = 6 or 7), the profit gap relative to the centralized profit becomes
very large, which is consistent with what we observed in Figure 8 (IIf; is very low for high
values of 6T™). Thus, for reasonable values of 6T, the case where each firm decides its DT,
and prices are controlled by one firm seems to more effectively coordinate the SC than the case
where each firm decides its price, and DTs are controlled by one firm. This is an interesting
result that cannot be obtained from existing models where only one firm has a DT. This result
is formulated in Observation 2. Note also that setting 2 leads to a less effective coordination
when p; < py (Gap(2)mz, mz, = 9.60% in this case) compared to the cases of y; > iy, which
contradicts the findings obtained with settings 1 and 3. Therefore, it seems that when the SC
leader does not have a full control on DTs, choosing the firm with the largest capacity as a

leader does not improve the SC coordination.

Observation 2. For realistic values of the upstream minimum required margin (relative to
the unit production cost), making all pricing decisions by the same firm and allowing each firm
to decide its own DT leads to a better SC coordination than making all DT decisions by the

same firm and allowing each firm to decide its own price.

We now investigate how the SC leader can use the DT to achieve a better coordination of the
SC (i.e., to increase the overall SC profit). We define IIZ** as the overall SC profit that can be
achieved when the SC leader sets the DT with the objective of maximizing the overall SC profit
instead of maximizing its own profit. In case of setting 1, for instance, II5** = r%?xﬂg(ll).We
refer the reader to Figures 4 and 5 for illustration (IIf, is the overall profit obtained with [],

whereas II** is the peak of the green curve). For each setting ¢, we evaluate numerically the

. (Tmax 11z, ) x 100 ) (I, —T132%) x 100
profit gap Gap(i)mme/mz, = o H*GG and Gap(i)m, jmmex = C 1'?*0 . Note that

Gap(i)nxgax /I, quantifies the gain that can be achieved if the SC leader manipulates the DTs to
coordinate the SC, while Gap(i)n*c Jmmex assesses the quality of the coordination by comparing
ITE#* for each setting ¢ to a same upper bound, which is given by the optimal centralized profit.

In these experiments, we consider, for setting 2, the different values of (5r1nin ranging from 1 to 7



with a step of 1. We present the results in Tables 5 and 6 for Gap(i)nncdax /mz, and Gap(i)n*c JTmas

respectively.

Table 5. Estimation of Gap(i)mme/mz,

Test scenario | Mean (%) | Std. deviation | Confidence interval | Feasible instances
1y = i 21.71 13.22 (21.50, 21.90) 14360
Setting 1 | 1y < g 15.13 12.85 (15.00, 15.27) 36000
[y > i 15.75 14.30 (15.60, 15.90) 33439
1y = o 7.28 17.06 (7.18, 7.38) 111878
Setting 2 | 1y < g 5.79 15.85 (5.73, 5.85) 259639
> o 6.46 18.81 (6.40, 6.52) 281523
P 21.71 13.22 (21.50, 21.90) 14360
Setting 3 | 11y < g 15.75 14.30 (15.60, 15.90) 33439
1y > i 15.13 12.85 (15.00, 15.27) 36000
Table 6. Estimation of Gap(z’)n*c /TIma
Mean (%) | Std. deviation | Confidence interval | Feasible instances
[y = 1y | 0.05 0.34 (0.05, 0.06) 14360
Setting 1 | p; < pgy | 0.01 1.00 (0.00, 0.02) 33439
g >y | 145 3.50 (1.42, 1.49) 33439
[y = py | 0.20 3.42 (0.14, 0.25) 14375
Setting 2 | py < py | 8.22 25.11 (7.96, 8.48) 35945
>y | 0.07 1.43 (0.05, 0.08) 35930
[y = iy | 0.0 0.34 (0.05, 0.06) 14360
Setting 3 | py < py | 1.45 3.50 (1.42, 1.49) 33439
[y > iy | 0.01 1.00 (0.00, 0.02) 33439

Observing Table 5, we first deduce that a judicious quotation of DT by the SC leader can

significantly increase the SC profit relative to IIf,. The average gain can reach 21.71% for settings

1 and 3 (with p; = py) and 7.28% for setting 2 (with p; = pip). We also see that Gaprpmes rrz,

reaches its highest value when p; = py. This can be explained based on Figures 4, 5, 6 and 7.

These figures illustrate how the SC leader should quote a longer DT to increase the overall SC

profit (as this leads to a greater demand as explained earlier). We see in Table 6 that, under

some conditions on capacities, II3** can be very close to 117, in all settings, as we have a mean



gap of 0.01% (with pq < pg), 0.07% (with py > ps) and 0.01% (with p; > py) for settings 1,
2 and 3, respectively. Thus, the coordination of the DT quotation between the upstream and
the downstream can lead to an overall SC profit that is almost equal to the centralized profit.
However, as this implies a lower profit for the SC leader, the leader will not naturally choose
this option.

In case of p; # 9, however, Table 5 shows that coordination has a relatively smaller effect
on improving the decentralized profit IIf, with comparison to the cases of y1; = ps. The reason is
that the SC has less chance to benefit from the additional demand under unbalanced capacities
since there is one stage that cannot satisfy the service constraint with this high level of demand.
Hence, the disparity between upstream and downstream capacities limits the gain resulting from
using DT's to coordinate the SC. Note finally that the profit gap is relatively small in case of
setting 2 as this setting is already well coordinated as explained earlier. The above analysis

leads to the following result.

Observation 3. In all settings, the DTs can be effectively used to coordinate the SC. A
Judicious DT quotation can significantly increase the overall SC profit and even make it very

close to the centralized profit. However, the coordination is less efficient in case of unbalanced

production capacities (i.e., p; # piy).

The above result highlights the importance of coordinating production capacities between
firms to benefit from the DT coordination. This is an important result that cannot be obtained
from the related literature since existing works typically consider only one capacitated firm (see
Table 1).

Finally, we compare the local profits of each firm under different settings to investigate
which setting is more profitable for the firm. Basically, we compare setting 2 to setting 1 to
understand which firm benefits from decentralizing the DT decision (as we do in setting 2)
instead of decentralizing the pricing (as we do in setting 1). We also compare setting 3 to
setting 1 to understand the impact of giving more decision power to the upstream (as we do in
setting 3) instead of giving more power to the downstream (as we do in setting 1). Thus, we
evaluate numerically the following gaps. We use the instances generated according to Table 3
as well as different values of 6™ (when setting 2 is involved). Due to the space constraints, we

do not provide here all the experiments but just present some representative results.

e Gap between the optimal profit of the upstream firm under setting 2 and its optimal profit



. I ,—TT 100
under setting 1, calculated as Gap(Sa2/S1)m = (7 55 H*l"“)x

1,51

. With 610 = 2, we obtain

the average gaps: —22.54%, —26.97%, and —22.26% for pu; = po, 1y < lg, and gy > po,
respectively. With 67" = 4, we obtain the average gaps: 23.34%, 20.34%, and 27.80% for
1 = W, b < W, and pq > o, respectively. With 5r1nin = 6, we obtain the average gaps:
49.32%, 49.99%, and 57.59% for u; = pg, p; < pig, and py > pg, respectively.

e Gap between the optimal profit of the downstream firm under setting 2 and its optimal

I o, —TI5 o, ) X 100
profit under setting 1, calculated as Gap(Sa/S1)my = (13,55 Hf’Sl)X

2,51

. With 61 = 2, we
obtain the average gaps: 38.48%, 28.89%, and 31.45% for u, = uy, p; < fio, and py > po,
respectively. With 8% = 4, we obtain the average gaps: 10.63%, 4.11%, and 5.00% for
W1 = e, b < Wo, and pq > o, respectively. With 5r1nin = 6, we obtain the average gaps:
—8.81%, —13.29%, and —13.45% for p; = pg, py < fg, and p; > uy, respectively.

e Gap between the optimal profit of the upstream firm under setting 3 and its optimal profit

I g —T% o, ) X100
under setting 1, calculated as Gap(S3/S1)mr = (7 5o H*1‘51)X

1,51

. We obtain the average

gaps: 162.99%, 189.32%, and 211.64% for py = py, pg < g, and pq > gy, respectively.

e Gap between the optimal profit of the downstream firm under setting 3 and its optimal

I 4 —TT5 o, ) X100
profit under setting 1, calculated as Gap(S3/S1)m; = (T3 55 Hf’Sl)X . We obtain the

2,51

average gaps: —56.54%, —60.43%, and —59.62% for p; = po, 1 < fo, and py; > o,

respectively.

The above experiments lead to the following final result.

Observation 4. For realistic values of the upstream minimum required margin (relative to
the unit production cost), the upstream firm makes more profit when it decides its price (i.e.,
setting 1) relative to when it decides its DT (i.e., setting 2), and the downstream firm makes
more profit when it controls both prices (i.e., setting 2) relative to when it controls both DTs
(i.e., setting 1). However, for relatively high values of the upstream minimum required margin,
the upstream firm makes more profit under setting 2, and the downstream firm makes more
profit under setting 1. Furthermore, as expected, each firm makes more profit when it leads the
SC (i.e., the upstream makes more profit in setting 8 than in setting 1, and the downstream

makes more profit in setting 1 than in setting 3).

When the upstream can guarantee a high minimum required margin 5‘f‘in, then deciding

the DT is better than deciding the price since the control of the local DT allows the upstream



to maximize the demand and thus to guarantee a higher profit since its margin is already
high. However, for relatively low values of 6%, the upstream cannot generate a high profit
even with a high demand. In this case, the upstream prefers to decide its own price to get a
profitable margin and, therefore, setting 1 becomes more profitable. Contrary to the upstream,
the downstream firm prefers setting 2 when the upstream has a small power (i.e., 7" is low).
The reason is that setting 2 gives the downstream more flexibility to set the prices in a way that
maximizes its local profit, and also allows the downstream to benefit from the DT quotation of
the upstream who will try to maximize the demand and, therefore, will contribute to improving
the downstream profit. When the upstream has more power (i.e., 51f‘in is high), the downstream
can get more profit if the upstream decides its own price (i.e., setting 1 instead of setting 2)
since the upstream will trade-off its unit margin with the demand and will not choose a high
unit margin at optimality. Finally, as expected, each firm makes more profit when it leads the
SC compared to the case when the SC is led by the other firm. This result is known in the

literature.

9 Conclusion

We studied the DT and pricing decisions in a two-stage decentralized SC facing a price- and
delivery time-sensitive demand in a stochastic environment. We defined the problem as a
sequential game and considered three settings. First, the downstream, as a Stackelberg leader,
decides its price and controls both DTs, and the upstream, as a follower, reacts by deciding its
own price. Second, the downstream decides its DT and controls prices, and the upstream reacts
by quoting its own DT. Third, the upstream, as a leader, decides its price and controls both
DTs, and the downstream, as a follower, reacts by deciding its own price. We characterized
analytically the optimal strategy of each firm under each setting. Then, we analyzed the optimal
solutions and discussed analytical and numerical insights.

Our study investigated trade-offs that govern the interactions between local DTs, overall
DT, prices, demand, and profits. For instance, we found that while the local DTs are always
positively correlated at optimality, there are situations where a firm may have interest in de-
creasing its own price if the other firm increases its price, which differs from the findings of the
related literature. Another interesting result is that the follower’s expected profit always in-

creases in quoted DT and in mean demand, whereas the SC leader’s expected profit is a concave



function in quoted DT and in mean demand. We showed in case of balanced capacity (i.e., same
capacity for both firms) that the SC will make the same overall profit and will offer the same
product to the customers (in terms of price and DT) regardless of the firm who decides the DT's
and acts as a leader. The amount of capacity allocated by each firm impacts the quality of SC
coordination. For instance, when the SC leader has a full control on DTs and each firm decides
its own price, setting the firm with the largest capacity as SC leader can generally improve
the SC coordination. Finally, we showed that the local DTs can effectively coordinate the SC.
However, the coordination is less efficient in case of unbalanced production capacities.

Our modeling effort and analysis come with limitations that can provide directions for further
research in the area. We assumed that both stages target the same minimum service level. A
natural extension would be to study the case where each stage may target a different service level.
We also assumed that the optimal strategy for each firm is based on a full information about
the capacity of the other firm. It is interesting to consider the case where capacity information
is not fully available as this may lead to different trade-offs. Other decision scenarios are also
interesting to investigate such as when each stage decides its own price and DT. This scenario,

however, is very difficult to solve in a decentralized context.
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Figure 3. p; in function of Iy with py > uy (for given dg2) (Setting 2)

Solving approach for Setting 3.

We first assume that pi,l; and lo are given and solve the downstream model. We obtain

a—a(pi+ma)—B(li+ly) O~Prtme)—flatle)—psts
2« ’ «

05 = max( ). We now turn to the upstream model.

The service constraint in model (M3.1) is binding and, consequently, it is equivalent to

z
a—oz(p1+m2+52)—/3(l1+l2):MI_E (47)
a*a(l’1+m2)*ﬁ(l1+lz)f‘u2+é

If the service constraint in model (M3.2) is binding (i.e., >

a—a(pi+mz)—B(li+l2)—pat+7
(7

a—a(pi+ma)—B(l1+l2) ), then do =

ot and A = py— % at optimality. Conse-

a—a(p1+me)—pBI1+12)
2a

quently, I; = 0 at optimality. Otherwise, do = and, consequently,

zlo
pr—po)l2+z
I = a—a(p1+ma)—Bla—2u, +1/(a—a(p1+ma)—Bla—2u,)>+882
— 25

at optimality according. Hence, model

(M3.1) is equivalent to

Hjlg(plab) = (p1 —my) (Mz _ i)

if p1 and l9 satisfy the binding condition in downstream model,

Maximize IIi(p1,l2) = 5
P120, l2>7= HllVB (p1,12) = (p1 — M) (aa(l’1+m2)5lz+2ﬂ1\/(Cla(p1+m2)5522ﬂ1) +85Z>

if p1 and I satisfy the non-binding condition in downstream model.
(48)

We write [; in function of p; and Iy and deduce that the binding condition in model

< a—a(p1+ma)—Bla+2u; —/(a—a(p1+ma)—Bla—2u,) > +86z
4

. This con-

. . .
(M3.2) is equivalent to py — 7
dition is equivalent to IT¥(p1,lz) < IIVB(p,l2). For given py, it can be verified that there

is a unique value of Iy such that II¥ = II'B, and we have IIV? > TI¥ before this intersec-



tion point and IIVZ < TIP after it. Moreover, given that II¥ is increasing in Iy and II)'5

is decreasing, we have II¥ = II{'P at optimality. Based on this analysis, we deduce that

2
a—a(prtma)—fla+2u 1_\/(‘14_0‘(’) 1tme)—Blo—2) +86z _ p2 — £ at optimality. Therefore, we obtain

p1 in function of Is and deduce the upstream model. The rest of the analysis follows immediately.
Proof. (Lemma 1) On the one hand, % = —2a < 0, implying that II;(p;) is concave
1
a—a(d2+mo—m1)—B(li+l2)
2c

in p1, and II;(p;1) reaches its maximum in pM? = (according to the

first derivative condition). On the other hand, service constraint (3) is equivalent to p; >

ﬁ —p1+a—a(d2+ma2)—B(l1+12) ﬁ —pqFa—a(d2+ma)—B(li+12)
(e} o

. We let pP =

. Thus, given the concavity of
IT;(p1), the optimal price p} = max(p?, pV?), where pP and p)'? are, respectively, the optimal
prices in binding and non-binding situations.

Furthermore, the service constraint is binding if and only if pf > pjlv B which is equivalent
to BI3 — (a — a(b2 +m) — 2uy — Bla) l1 — 22 < 0.

It is highlighted that the obtained prices are positive and yield positive demand. Thus,
p{v B > 0 since the DTs and margin quoted by the downstream will verify I; +1ly < W
(otherwise, it is not possible to get a positive demand for any value of p; > mj). If the binding

situation is preferred, then pP > 0 since we necessarily have pf > p'? in this case. With respect

a—a(d2+m2)—B(l1+l2)

=~ . Given

to demand, first recall that demand is positive if and only if p; <

that I; > uil (otherwise, the upstream model cannot be feasible), then pP < aia(éﬁm;)*ﬁ (atlz)

Moreover, it can be verified that p)? < “_a(62+m;)_6(11+12) since I1 + s < Mgzﬂl' ]
Proof. (Lemma 2) Suppose that we have at optimality 03, [] and [3, such that (uy — A*) [5 > z.

Substituting p] by its expression, this inequation becomes equivalent to (% + g — ,ul) 5>z
( a—o(85+m) B +13) )
Mo — 2

in a binding situation, and 5 > z in a non-binding situation.
In a binding situation, we can decrease 5 to I while keeping 5 and [} constant until we
obtain (f + pg — /Ll) I = z. The new solution (03,17,15) is still feasible, and II5(03,5,15) >

I12(03,17,1%) (since demand has increased), which is impossible.

In a non-binding situation, we can decrease [ to I} while keeping 5 and 5 constant until

a—a(d2 er)*ﬁ(li +l§) ) I
2 2

we obtain (,u2 - = z. The new solution (05,1],13) is still feasible, and
II5(85, 15, 1%) > Ta(03, 1, 13), which is impossible. Hence, in both cases, the service constraint in
the downstream model is binding. =

Proof. (Lemma 3) Case of binding situation in the upstream model. In this case, p; =

7, —tta—a(d2+m2)—p(li+l2)
[e%

. As constraint (7) is binding, we have (g — a + a(p1 + ma + d2) + B(l1 + 12)) I =

z at optimality. Replacing p;with its expression in the previous equation, it comes that



Iy = % at optimality. The expressions of p; and A as a function of o and [; can
1

then be obtained by standard calculus.

a—a(d2+mao—my)—B(l1+12) )

Case of non-binding situation in the upstream model. In this case, p1 = a

Given that (ug —a + a(p1 + ma + 02) + B(l1 + 12)) la = z at optimality, we substitute p; by its
value, and the previous equation becomes equivalent to 812 — (a — a (82 +m) — Bl1 — 2u5) lo —
2z = 0. The discriminant of this equation is positive. Hence, the equation has two roots. Since

one of them is negative, the value of [5 is given by the positive root,

—a(da+m)—pl1 72p2+\/(a7a(52 +m)—Bl1 —2p0)% 4882
26

namely < . We then obtain the expressions of p;
and X\ as a function of d9 and /1. =

Proof. (Proposition 1) /] is obtained from (14). We use Lemma 3 to determine /5 and pj (we
can use either the binding or the non-binding properties and obtain the same results since Il (l;)

is calculated in the intersection between these two situations). We then deduce 07 = pj — m;.

Furthermore, 65 is deduced from equation (11) and p5 = pj+ ma + 5. ®
a—a(p1+ma+62)—Bla—py +1/(a—a(p1+ma+02)—Bla—p, )2 +482
28 :

Proof. (Lemma4). First recall that I7 (d2,l2,p1) =
Given that A\ = —ﬁ at optimality, then demand increases in Ij (d2,l2,p1). For fixed 02 and py,
it can be easily verified that [] is decreasing in [, which implies that demand is also decreasing
in [y (for fixed d2 and p;).

We can now demonstrate the result of Lemma 4 by contradiction. Assume that we have an
optimal solution (83, 1%, p%) such that 1 — e~ (#2=A)5 > 5. We can decrease the DT from I to
l'2 while keeping 5 and p} constant until we obtain 1 — e~ (2=l — 5 Solution (63,17, l;) is
feasible and leads to a higher demand, which implies that II(63, p}, 1,2) > II5(65, pi, 13). This is

impossible. Consequently, the service constraint is binding. =

Proof. (Remark 1) If puy < pg, then the discontinuity occurs for negative values of ly. If

Lo > 117, then we must consider only the values of I such that Iy < - - e On the one hand,

we have at optimality A = py — é and, on the other hand, A < u; according to the steady-state

z
Ho—Hq

condition, which implies that I < at optimality. =

Proof. (Remark 2) If py (8, [5%%) > my + 67" then it is easy to ascertain that constraint (30)
cannot be satisfied. Consequently, (2, 15'**, p1(d2,5'**)) is not a feasible solution. In this case,
the longest feasible DT (if it exists) is obtained when constraint (30) is binding. This implies
that the optimal demand is equal to zero, and the problem is not relevant. m

Proof. (Proposition 2) Follows from the analysis of setting 2. m

Proof. (Proposition 3) Methodology similar to setting 1. m



Proof. (Corollary 1) In all settings, [; = ﬁm at optimality, and we have [ = 1 + [s.

DTs are therefore positively correlated. For prices, it can be verified, for instance in case of
setting 1, that p] increases in DT and p3 decreases in DT. m

Proof. (Corollary 2). In case of setting 1, for instance, we have A = p; — ﬁ at optimality,
which implies that demand increases in DT. Same for the other settings. m

Proof. (Corollary 3) In case of setting 1, for instance, we deduced that II;(l1) = é (/h . ﬁ)2
Hence, the upstream profit increases in [; and therefore increases in ly,l and A (as they are
positively correlated). Given that A = p; — ﬁ at optimality, I13(l1) can be expressed in function
of A as ITa(N\) = A [é (a - (—M% — (—M% - 2)\) - m] . It can be easily verified that IIa(\) is
concave (and therefore ITa(l1) is concave). Same approach for the other settings. m

Proof. (Corollary 4) Consider setting 1 with capacities p; and o for upstream and downstream,

respectively. According to Proposition 1, the optimal upstream DT is given by maximizing

1 x zl}
(Ml_ﬁ) ) G_Bll_g}ij%li)—2<ﬂl—ﬁ)>—m] and ZQ—W.WQDOWCOD-
1

sider setting 3 with capacities py and p; for upstream and downstream, respectively. According

to Proposition 3, the optimal downstream DT is given by maximizing
_z2\ |1 (4g—-Bl) — — Bz _ _z)| = oAy
(,ul l2> [a (a Bla (uz—uﬁri) 2<,u2 b)) m] and [] P i 8 Thus, the
optimal upstream DT (respectively, downstream DT) for setting 1 is equal to the optimal

downstream DT (respectively, upstream DT) for setting 3. Consequently, the overall DT [* is

the same in both cases.

Bz
=
1

Under setting 1, the final price is é a— BT —
(Mz—lh‘f'%

) — (M - li) . Under setting

z

3, it equals é a— By — ( — (/LQ — %) . Given that pq, gy and [} of setting 1 are

B1—Hot+1E
2
respectively equal to py, p1; and [5 for setting 3 when we swap capacities, we deduce that the
final price is the same in both cases.
Similarly, considering the objective function of each stage under each setting and the fact

that g, 9 and [] of setting 1 are respectively equal to po, p; and [5 for setting 3 when we swap

capacities, we deduce that the upstream and downstream profits are also swapped. m





