
HAL Id: hal-03519860
https://rennes-sb.hal.science/hal-03519860

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The illusion of oil return predictability: The choice of
data matters!

Thomas Conlon, John Cotter, Emmanuel Eyiah-Donkor

To cite this version:
Thomas Conlon, John Cotter, Emmanuel Eyiah-Donkor. The illusion of oil return predictabil-
ity: The choice of data matters!. Journal of Banking and Finance, 2022, 134, pp.106331.
�10.1016/j.jbankfin.2021.106331�. �hal-03519860�

https://rennes-sb.hal.science/hal-03519860
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


The illusion of oil return predictability: The choice

of data matters!?

Thomas Conlona, John Cottera,b, Emmanuel Eyiah-Donkorc,∗

aMichael Smurfit Graduate Business School, University College Dublin, Co. Dublin, Ireland
bAnderson School of Management, University of California, Los Angeles, USA
cRennes School of Business, 2 Rue Robert D’Arbrissel, 35065 Rennes, France

?The authors are grateful to the Editor (Carol Alexander), an Associate Editor (Marcel Prokopczuk),
and two anonymous referees for their constructive comments. The authors acknowledge the support of
Science Foundation Ireland under grant numbers 16/SPP/3347 and 17/SP/5447. We also acknowledge
the comments of Gregory Connor, Ana-Maria Fuertes, Paulo Guasoni, Jöelle Miffre, Conall O’Sullivan,
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The illusion of oil return predictability: The choice

of data matters!

Abstract

Previous studies document statistically significant evidence of crude oil return predictability by

several forecasting variables. We suggest that this evidence is misleading and follows from the

common use of within-month averages of daily oil prices in calculating returns used in predict-

ive regressions. Averaging introduces a bias in the estimates of the first-order autocorrelation

coefficient and variance of returns. Consequently, estimates of regression coefficients are ineffi-

cient and associated t-statistics are overstated, leading to false inference about the true extent

of return predictability. On the contrary, using end-of-month data, we do not find convincing

evidence for the predictability of oil returns. Our results highlight and provide a cautionary

tale on how the choice of data could influence hypothesis testing for return predictability.

JEL classification: C22; C32; C53; Q47

Keywords: Averaged crude oil data; Spurious autocorrelation; Return predictability; Out-of-

sample forecasts; Statistical inference

1. Introduction

Empirical support for the predictability of monthly crude oil spot returns based on

various financial, economic fundamental, commodity market, and technical indicator vari-

ables has been well documented (see, for example, Chinn and Coibion, 2014; Yin and

Yang, 2016; Zhang et al., 2018; Zhang et al., 2019; and the references therein).1 The

sheer number of papers devoted to forecasting the spot price and return of crude oil is

not surprising considering the crucial importance of reliable forecasts for policy-making,

explaining fluctuations in and projecting economic activity, and for risk management pur-

poses by firms engaged in the production, marketing, and processing of crude oil (Black,

1976).2

1While the focus of the current paper is on forecasting crude oil returns, there is also a voluminous
literature, including Ye et al. (2006), Alquist et al. (2013), Chen (2014), Baumeister and Kilian (2015),
Baumeister and Kilian (2015), and Baumeister et al. (2018), that forecast the price of oil in levels using
the monthly average spot price of crude oil.

2For example, crude oil forecasts serve as a key input in gauging inflation expectations, and large fluc-
tuations in crude oil prices have been shown to have a substantial impact on the real economy (Barsky
and Kilian, 2002; Kilian, 2008; Alquist et al., 2013).
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The model typically used by the literature in examining oil return predictability is an

ordinary least squares (OLS) regression where returns are regressed on a constant and the

lagged values of one or more forecasting variables. Significant in-sample t-tests or some

measure of out-of-sample tests are then interpreted as evidence of return predictability.

In particular, the time-series of returns used in the model are calculated using within-

month averages of daily prices (in which case we have monthly average returns). Studies

on oil return predictability use monthly averaged returns and find predictability, whereas

end-of-month returns are used for other assets with little or no predictability reported.3

In this paper, we comprehensively re-examine the ability of 40 popular macroeconomic

and technical indicator predictor variables to forecast crude oil returns, both in- and out-

of-sample, for the two data series: monthly average and end-of-month returns. The

purpose is to highlight the inferential biases concerning the statistical properties of the

commonly used monthly average crude oil spot returns in predictive regressions, the

econometric estimation problems, and the implications for hypothesis testing for return

predictability. Returns calculated from within-month averages of daily crude oil prices,

besides introducing a bias in the estimates of the first-order autocorrelation coefficient

and variance of returns, will generate inefficient estimates of regression slope coefficients

and result in serially correlated residuals, leading to biased estimates of standard errors.

As a result, evidence against the null hypothesis of no return predictability will appear

more statistically significant than they really are.

Although the aforementioned problems have been well documented in the literature

for a long time (see, for example, Working, 1960; Cowles, 1960; Daniels, 1966; Rosenberg,

1971; Schwert, 1990; Wilson et al., 2001), it is surprising that the vast majority of the

literature examining the predictability of crude oil returns continue to use averaged price

data to calculate returns. What solid theoretical argument supports this choice is not

exactly clear. Perhaps, it simply stems from some kind of “herd behaviour” in empirical

research, namely, an initial crude oil predictability study used monthly average returns

and then various other studies followed. Ye et al. (2006) is the only study we are aware

of that provides some rationale and they do so in the context of monthly average price

3Table A1 of the Internet Appendix presents a synopsis review of studies on return predictability across
various asset classes, including stocks, bonds, currencies, and commodities, the price data series used
in computing returns, the journal that published the article and whether or not they found evidence of
predictability.
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as follows: (i) the average price mitigates one-day market perturbations resulting from

rumours, and is less noisy; (ii) the average generates better predictability results; and (iii)

the correlation between end-of-month and monthly average prices was 0.99 during the

sample period considered for their study. For example, even though reason (i) applies to

all financial markets, the vast predictability literature does not use monthly average prices

in calculating returns (see Table A1 of the Internet Appendix). We disagree with these

reasons as they do not immunize returns calculated from monthly average prices from

the severe consequences for econometric model estimation and predictability inference.

The reliance on monthly average prices in calculating returns is also problematic for

investment decision making and risk management. For example, end-of-period returns

rather than average returns are used in testing the informational efficiency of an as-

set market such as crude oil. Consequently, if market participants who deploy trading

strategies aimed at exploiting market inefficiencies to make excess profits were to rely

on average returns, this could affect their investments. Therefore, the correct returns

series to use for studying predictability is end-of-month returns and not monthly average

returns.4

Further, we attempt to remedy the econometric issues of inefficiency of slope coeffi-

cient estimates and biased estimates of standard errors, and the severe consequence of

false inference for the return predictability hypothesis. We follow standard econometric

procedures by implementing two remedies: (i) we accept the efficiency loss in the OLS

estimator and test for the significance of the estimated slope coefficients using t-statistics

that are robust to heteroskedasticity and autocorrelation in estimated regression residuals

(Newey and West, 1987); (ii) we implement a generalised least squares (GLS) estimator

for the slope parameters. This is motivated by the fact that in the presence of serial

4From the point of view of investment strategies in crude oil futures markets, an investor would, say,
buy crude oil (taking a long position in the front futures contract at the end of month t) and sell crude
oil (close the open position by taking a short position at the end of month t + 1; if the price at the
end of month t + 1 is larger than the price at the end of month t then she makes a monthly profit
of Zt = (Pt+1 − Pt)/Pt, where Pt and Pt+1 are the aforementioned end-of-month prices. Accordingly,
it seems then that if the investor was to base her trading decision on predictions of future monthly
returns, the appropriate object of the predictability regressions shall be Zt = (Pt+1 − Pt)/Pt, where Pt

and Pt+1 are the end-of-month prices. It is difficult to fathom just why the investor might be interested
in predictive regressions where the object to forecast is Wt = (Pt+1 − Pt)/Pt, where Pt and Pt+1 are
not the prices that would define her actual profit (or loss) but instead the average of within-month
daily prices. It seems to be that if the profits are defined by a random variable Zt then the object of
predictions should be Zt and not something else like Wt. This is possibly why the bulk of papers in the
empirical finance literature use end-of-month returns. We thank a reviewer for this comment.
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correlation in the regression errors, the OLS estimator is inefficient and GLS becomes the

efficient estimator.

Studies that have looked at related issues include Bork et al. (2018) in the context

of forecasting commodity index returns and Benmoussa et al. (2020) who examine the

accuracy of model-based forecasts of the real price of crude oil using a new benchmark

forecast calculated from end-of-period prices.5 Our paper differs from these studies in

that, apart from highlighting the spurious predictability of crude oil returns calculated

from monthly average spot prices using a large set of predictors, we also implement

econometric techniques aimed at addressing the autocorrelation in monthly average return

forecasting regressions to shed more light on the importance of the choice of returns data

when examining predictability.

Our empirical results can be summarized as follows. First, averaged crude oil price

data introduces an upward bias in the estimate of the first-order autocorrelation coeffi-

cient in monthly average returns. Estimates of variance and covariance of returns with

predictors are also biased downward compared to returns computed from end-of-month

prices. For example, monthly average (end-of-month) returns have a first-order autocor-

relation coefficient of 0.286 (0.149) and a standard deviation of 8.28% (9.16%). These

agree with the findings in Working (1960) and Schwert (1990).

Second, most of the individual macroeconomic and technical indicator predictor vari-

ables display statistically significant predictive ability at conventional significance levels,

both in- and out-of-sample, for monthly average crude oil returns compared to fore-

casts from the random walk with drift benchmark model. Consistent with findings in

Baumeister and Kilian (2014b), Baumeister and Kilian (2015), Yin and Yang (2016),

Zhang et al. (2018), among others, we also find that combination forecasts of monthly

average returns substantially improve upon the individual forecasts by generating more

accurate and stable forecasts. These conclusions, however, are completely reversed when

end-of-month crude oil returns are used as the dependent variable in our predictive mod-

5Bork et al. (2018) highlight that the predictability findings in Chen et al. (2010) may be spurious
because the commodity index returns the authors used were computed from monthly average prices
which induces autocorrelation in returns. The study of Benmoussa et al. (2020) highlight that the
choice of benchmark forecast matters when examining the predictive accuracy of model-based forecast
of the real price of crude oil. They show that a new no-change benchmark forecast based on end-of-
period prices generate more accurate forecasts than the model-based forecasts, reversing a previous
conclusion where the benchmark forecast was the no-change average crude oil price.
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els. The misleading inference for the predictability of monthly average crude oil returns

can be attributed to the inferential biases concerning the statistical properties of averaged

crude oil spot returns data which, when used in predictive regressions, lead to estimates of

OLS slope coefficients that are inefficient and estimates of associated standard errors that

are biased. This result is reminiscent of findings in the existing literature that highlight

how some of these biases could potentially lead to discovering highly significant predict-

ive relationships that otherwise would not exist (see Kendall and Hill, 1953; Working,

1960; Cowles, 1960; Box and Newbold, 1971; Granger and Newbold, 1974; Phillips, 1986;

Granger et al., 2001; Valkanov, 2003; Ferson et al., 2003; among others).

Our third major finding is that our earlier results about tests of predictability for

monthly average returns remain largely unchanged even after testing the significance of

slope coefficient estimates using test statistics that are robust to heteroskedasticity and

autocorrelation in the estimated regression residuals, and dealing with the inefficiencies

of the slope parameters and biased standard errors via feasible generalized least squares

estimators.

The rest of the paper is organised as follows. In Section 2, we highlight the inferen-

tial biases concerning the statistical properties of crude oil spot returns calculated from

averaged price data and their implications for hypothesis tests of return predictability

when used in predictive regressions. Section 3 describes the crude oil price data used

in calculating returns, the predictor variables, and offers preliminary data analysis. In

Section 4, we describe the methodology for predicting and evaluating crude oil return

forecasts. The empirical analysis of in-sample and out-of-sample tests of crude oil return

predictability is detailed in Section 5. Section 6 provides a discussion of remedies for

the spurious autocorrelation in monthly average returns and the associated econometric

issues of inefficiencies of the OLS slope coefficient estimates and biased standard errors.

We offer concluding remarks in Section 7.

2. Background and problem statement

Before detailing the data and methodology for predicting crude oil returns, we first

illustrate the econometric model estimation and inferential issues underpinning the use of

monthly average returns data in predictive regressions. Suppose T monthly observations

of asset prices are available, where Pt denotes the month t price of the asset. Define
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monthly log returns as

rt = ln

(
Pt
Pt−1

)
. (1)

Studies that examine the predictability of asset returns differ depending upon the form

of price data used in (1): end-of-month prices or within-month averages of daily prices

where Pt = (1/n)
∑n

i=1 Pi and n is the number of trading days in the month.

The data commonly used in crude oil predictability studies is the West Texas Inter-

mediate (WTI) crude oil prices available from website of the U.S. Energy Information

Administration (EIA).6 A note to the release of energy spot prices, including crude oil,

by the EIA has the following explanatory notes:

Weekly, monthly, and annual prices are calculated by EIA from daily data

by taking an unweighted average of the daily closing spot prices for a given

product over the specified time period.

First, and as already indicated, returns calculated from averaged data face three biases:

estimates of the variance and the first-order autocorrelation coefficient are biased down-

ward and upwards, respectively (Working, 1934; 1960), and estimates of covariance of

averaged returns with other variables will be downward biased (Schwert, 1990). Working

(1960) shows that the variance of the rates of change in a time-series of the average of

successive data points within a given time interval is

Var(rt) =

(
2m2 + 1

3m2

)
× Var(r̃t),

where m is the number of points within the interval (for example, m could be the number

of trading days or the number of weeks within a given month), Var(·) is the variance

operator and r̃t is the end-of-month return. The term in the first bracket, which is the

variance reduction factor, approaches 2/3 as n increases to infinity. Assuming that there

are, on average, 21 trading days within a month, this means that the variance (standard

deviation) of monthly average returns should be increased by a factor of 1.5 (1.225) to

make it comparable to that of end-of-month returns. As such, the variance of average

returns is understated or downward biased by approximately 33%. Working (1960) further

shows that the use of average returns to calculate the autocorrelation coefficient leads to

6https://www.eia.gov/
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an upward bias in the estimated first-order autocorrelation, ρ, given by:

ρ ≡ Corr (rt, rt−1) =
m2 − 1

2(2m2 + 1)
,

where Corr(·) is the correlation operator and m determines the upward bias. For example,

for m = 21, ρ ≈ 0.25 meaning averaged data would have first-order autocorrelation of an

amount approximately 0.25 greater than that of the end-of-period data. Similar findings

are reported in Cowles (1960), Daniels (1966), and Rosenberg (1971). These biases have

been confirmed in Schwert (1990) and Wilson et al. (2001). Schwert (1990), for example,

studies CRSP monthly returns of NYSE and AMEX stocks, where returns are calculated

using the average of the high and low prices within the month, whereas Wilson et al.

(2001) use U.S. S&P 500 Composite Index returns from 1957 to 2001 calculated for

three different types of monthly average prices: median high and low, weekly and daily.

Schwert (1990) further extended the analysis to show that estimates of covariance of

averaged returns with other variables will be downward biased compared to estimates

based on the end-of-period returns data.

Second, suppose we are interested in knowing whether the month t value of a candidate

predictor variable, xt, is useful for predicting the month t+1 value of log crude oil returns,

rt+1. A simple model for assessing the predictive content of xt is the OLS regression:

rt+1 = α + βxt + εt+1, (2)

where the constant, α, and the slope coefficient, β, are unknown parameters to be estim-

ated, and εt+1 is an error term. The standard assumptions underlying the OLS estimator

of the linear regression model are that the errors εt+1 are independent of xt (E[εt+1|xt] = 0)

and are independent and identically distributed as normal with zero mean and constant

variance (homoskedastic), and serially uncorrelated over time (E[εt+s, εt] = 0, s 6= 0). If

β 6= 0, then today’s value of x can be used to predict the value of r for the next month.

The null hypothesis of no-predictability, that is xt has no predictive content for rt+1 and

therefore β = 0, can be tested using the t-statistic for the significance of β̂, the estimator

for β.

As a result of the bias in the estimates of the first-order autocorrelation coefficient

and variance of monthly average returns, when used in (2) above, the standard OLS
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assumptions underlying the model, especially the assumption of serially uncorrelated

errors, will typically fail. The consequence is that although β̂ is still a consistent for β, it is

no longer the best linear unbiased estimator. The estimator is inefficient and estimates of

the associated standard errors are biased, thus conventional test statistics based on them

will be invalid (even under large sample sizes) giving rise to highly unreliable inferences

when used in hypothesis testing for predictability (see Greene, 2017). Using averaged

returns in the predictive regression model poses an even bigger problem for forecasting:

return forecasts will be sub-optimal (Rosenberg, 1971; Box and Newbold, 1971; Granger

and Newbold, 1974). Given these problems, it is likely that the evidence against the no-

predictability hypothesis documented in the majority of the crude oil return predictability

studies is misleading.

3. Data

3.1. Crude oil returns

Daily closing prices and monthly averages of the daily closing WTI crude oil spot

prices are obtained from the website of the EIA.7 From the daily prices, we build end-

of-month price series. The price series, which are originally in nominal terms8, are then

deflated by the seasonally adjusted U.S consumer price index obtained from the St Louis

Federal Reserve Economic Data (FRED). Log returns are calculated using the real crude

oil prices. For the remainder of this paper, unless otherwise stated, returns refer to log

returns. Our predictability analysis focuses on monthly real crude oil spot returns from

January 1987 to December 2016, providing a total of 360 observations. This sample

overlaps with the period used by many of the crude oil return predictability studies we

cite in this paper.

Panel A of Table 1 presents descriptive statistics for returns. The monthly average

and end-of-month return series are quite different under a number of summary headings.

The mean and standard deviation of monthly average returns are lower than those of

end-of-month returns. For example, the standard deviation of 8.28% for monthly av-

7The EIA defines the spot price as the price for a one-time open market transaction for immediate
delivery of a specific quantity of crude oil at a specific location where the commodity is purchased “on
the spot” at current market rates.

8Results based on nominal returns are very similar to those based on real returns and are available upon
request.
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erage returns is about 11% lower when compared to a standard deviation of 9.16% for

end-of-month returns. Monthly average returns are more left skewed and fat-tailed than

end-of-month returns. Monthly average returns also have a first-order autocorrelation

coefficient of 0.284, almost double the autocorrelation of 0.129 for end-of-month returns.

Figure 1 plots the sample autocorrelation function (acf) up to 36 lags with 95% confidence

bands for the two return series. The figure show that the first-order autocorrelation coef-

ficient is significant at the 5% level for both monthly average and end-of-month returns.

This is supported by the Lagrange multiplier test for serial correlation which indicates

a rejection of the null hypothesis that the first (first 12) autocorrelation coefficient(s) is

(are jointly) equal to zero for both returns series. The significantly high levels of the auto-

correlation coefficient, especially for the monthly average returns, and as earlier noted

may result in estimates of predictive regression slope coefficients that are inefficient and

associated standard errors that are biased, leading to unduly high t-statistics for testing

the significance of slope coefficients.

The augmented Dickey-Fuller test for a unit root reported in the last column of

Panel A of Table 1 indicates that both monthly average and end-of-month returns are

stationary. Figure 2 plots the acf of squared returns. The figure shows evidence of

heteroskedasticity and, therefore, test statistics that account for this feature of the data,

as well as autocorrelation, should be used when testing for predictability. The descriptive

statistics and qualitative features of monthly average returns confirm the predictions of

Working (1960) and Schwert (1990) that averaging returns leads to a downward and

upward bias in the estimates of the variance and the first-order autocorrelation coefficient

of returns, respectively.

The estimates of covariance of returns with predictors are reported in Panel C of

Table 1. Covariance estimates of monthly average returns are biased downward compared

to those for end-of-month returns. This is expected to influence the estimates of beta

in predictive regressions since the covariance formula, which include estimates of the

standard deviation of returns and predictors, respectively, is a key component in the

calculation of beta.

[Insert Table 1 about here]

[Insert Figure 1 about here]
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[Insert Figure 2 about here]

3.2. Predictor variables

We consider a set of 40 predictor variables: 28 macroeconomic and 12 technical in-

dicator variables that have been used previously in studies on the predictability of crude

oil returns. A list of the predictors along with a brief description is provided below.

The first set of 28 macroeconomic predictors (see, for example, Alquist et al., 2013;

Baumeister and Kilian, 2014a; Baumeister et al., 2018; among others) are:

• Futures return: log return on WTI crude oil futures traded on the New York Mer-

chandile Exchange (NYMEX). Returns are calculated using the end-of-month set-

tlement prices of the generic first month maturity future contract, which is con-

structed by rolling over to the next nearest to maturity contract at the last trading

day of the month prior to the delivery month;

• Basis: difference between the logs of end-of-month settlement prices of the first two

nearest-to-maturity WTI crude oil futures contracts on the NYMEX;9

• Hedging pressure (HP): equally weighted average of hedging pressure for each of the

commodities that is a constituent of the S&P Goldman Sach’s commodity index.

Hedging pressure for each commodity is defined as the ratio of the difference between

the dollar value of short and long hedge positions held by commercial traders to

the total of the number of hedge positions;

• Price pressure (PP): percentage change in hedging pressure;

• Open interest (OI): growth rate in the aggregate market open interest. To construct

this variable, we aggregate dollar open interest within each of the commodities that

is a constituent of the S&P Goldman Sach’s commodity index, and then compute

the monthly growth rate as ln(OIt)− ln(OIt+1). Finally, we compute the aggregate

open interest as an equally weighted average of the growth rate of open interest

across all commodities.

• Spot crack spread (SCS): growth rate in spot crack spread, where crack spread is

defined as of the sum of two-thirds of the nominal spot price of gasoline and one-

9Theoretically, the basis of a commodity is defined as the difference between its contemporaneous spot
price and futures price with some maturity. Empirically, because spot and futures contracts are traded
on separated markets and the nearest futures price is very close to the spot price due to the no-arbitrage
condition, the literature usually uses the nearest futures price to proxy the spot price to compute the
basis.

10



third of the nominal spot price of heating minus the nominal spot price of crude

oil;

• Gasoline spot spread (GSS): growth rate in gasoline spot spread, where gasoline

spot spread is defined as the nominal spot price of gasoline minus the nominal spot

price of crude oil;

• Heating oil spot spread (HSS): growth rate in heating oil spot spread, where heating

oil spot spread is defined as the nominal spot price of heating oil minus the nominal

spot price of crude oil;

• Global oil inventory (GOI): growth rate in global crude oil inventory. The inventory

data used in calculating this variable is constructed by multiplying U.S. crude oil

inventories by the ratio of OECD petroleum inventories to U.S. petroleum inventor-

ies. Petroleum inventories are defined to include both stocks of crude oil and stocks

of refined products;

• Global oil production (GOP): growth rate in global crude oil production. Data on

global crude oil production is downloaded from the database of the EIA;

• Commodity currencies: growth rate in the exchange rate of the currencies of Aus-

tralia (AUS), Canada (CAN), New Zealand (NZ), and South Africa (SA) against

the U.S. dollar;

• Return on S&P 500 index (S&P500): log return on the S&P 500 index;

• Treasury bill rate (TBL): interest rate on the U.S. 3-month Treasury bill (secondary

market);

• Change in Treasury bill rate (CTBL);

• Yield spread (YS): Aaa-rated bond yield minus treasury bill rate;

• Default premium (DFY): Baa-rated bond yield minus long-term government bond

yield;

• Term spreads (TMS1Y; TMS2Y; TMS5Y): difference between 2- and 1-year gov-

ernment bond yields; difference between 5- and 2-year government bond yields;

difference between 10- and 5-year government bond yields;

• VIX: Chicago Board Options Exchange volatility (CBOE) index. The VIX data is

only available from January 1990. Prior to this date, we use data on the CBOE

S&P 100 volatility index;

• Global real economic activity index (REA): the index is constructed from data on

11



global dry cargo ocean shipping freight rates as described in Kilian (2009);

• Baltic dry index (BDI): growth rate in the Baltic dry index;

• Inflation (INFL): growth rate in the U.S. consumer price index (all urban con-

sumers);

• Capacity utilization (CAPUTIL): growth rate in the degree of capacity utilization

in U.S. manufacturing;

• Industrial production (INDPRO): growth rate in the U.S. industrial production.10

In predictive regressions, the macroeconomic variables INFL, CAPUTIL, and INDPRO

are lagged by an additional month to account for publication delays.

The second set of predictors we consider are 12 technical indicators based on three

trading rules, namely, moving-average, momentum, and on-balance volume moving av-

erage (see, for example, Miffre and Rallis, 2007; Fuertes et al., 2010; Szakmary et al.,

2010; Yin and Yang, 2016; among others). We use the end-of-month settlement prices

and volume data on the generic first month to maturity WTI crude oil futures on the

NYMEX, also from Bloomberg, to generate these technical indicators.

The moving average (MA) rule attempts to detect trends in the market prices. It

generates a buy (sell) signal (si,t = 1 (si,t = 0)) at the end of month t if the short-term

moving average of prices is higher (lower) than the long-term moving average of prices:

si,t =

1, if MAk,t ≥ MAl,t,

0, if MAk,t < MAl,t,

(3)

where MAj,t = (1/j)
∑j−1

j=0 Pt−1, j = k, l. Pt is the level of crude oil prices, and k (l) is the

length of the short (long) look-back periods for comparing moving averages, MA(k < l).

The MA indicator with length k and l is denoted by MA(k, l). Because the MA rule

detects movement in prices, we should therefore expect the short MA to be more sensitive

to recent movements in crude oil prices compared to the long MA. In our empirical

10The sources of data for constructing the macroeconomic variables are as follows: Futures return, Basis,
commodity currencies, and BDI are from Bloomberg; HP, PP, and OI are from the Commodity Futures
Trading Commission (CFTC); SCS, GSS, HSS, GOI, and GOP are from the EIA; S&P 500, TBL,
CTBL, YS, DFY, and INFL are available on Amit Goyal’s website at http://www.hec.unil.ch/agoyal/;
TMSI1Y, TMS2Y, TMS5Y, VIX, CAPUTIL, and INDPRO are from the St Louis Federal Reserve
Economic Data at https://fred.stlouisfed.org/; REA is available at the Federal Reserve Bank of Dallas
at https://www.dallasfed.org/research/igrea.
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analysis, we consider MA rules with k = 1, 2 and l = 9, 12.

The momentum (MOM) rule generates a buy or sell signal at the time t (si,t = 1

or si,t = 0) depending on whether the current crude oil price is higher than its price m

periods ago. That is, a momentum rule generates the following signal:

si,t =

1, if Pt ≥ Pt−m,

0, if Pt < Pt−m.

(4)

Intuitively, if the current crude oil price is higher than its price level m periods ago,

this indicates “positive” momentum and relatively high expected excess returns, and will

therefore generate a buy signal. We denote the momentum indicator that compares Pt

to Pt−m by MOM(m), and we compute monthly signals for m = 3, 6, 9, 12.

The on-balance volume moving average (VOL) rule employs volume data together

with past prices to identify market trends. We first define on-balance volume (OBV) as

OBVt =
t∑

k=1

VOLkDk, (5)

where VOLk is a measure of trading volume during period k and Dk is a binary variable

that takes a value 1 if Pk − Pk−1 ≥ 0 and −1 otherwise. We then form a trading signal,

(si,t = 1 or si,t = 0, respectively) at month t from OBVt by comparing two moving

averages as

si,t =

1, if MAOBV
k,t ≥ MAOBV

l,t ,

0, if MAOBV
k,t < MAOBV

l,t ,

(6)

where MAOBV
j,t = (1/j)

∑j−1
i=0 OBVt−i, j = k, l. The intuition behind this rule is that

recent high volume together with recent price increases in crude oil, for example, indicate

a strong positive market trend and therefore generates a buy signal. We analyse VOL

rules for months k = 1, 2 and l = 9, 12.

Panel A of Table 2 reports summary statistics for the macroeconomic variables. The

autocorrelation coefficients of the variables decay at a rate that is consistent with the

assumption that the time-series are stationary. This assumption is confirmed for almost

all our predictors by an augmented Dickey-Fuller test for a unit root which rejects the

null hypothesis of a unit root in favour of the alternative that the time-series of predictors
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are stationary.

Panel B of Table 2 reports the summary statistics for the technical indicators. Similar

to the conclusion for the macroeconomic variables, the decay rate of the autocorrelation

coefficients estimates suggest that the time-series of technical indicator variables are sta-

tionary which is confirmed by the rejection of the augmented Dickey-Fuller test for unit

root.

[Insert Table 2 about here]

4. Econometric methodology

In this section, we describe the return prediction models (individual predictive re-

gression model and forecast combination methods) and the criteria we use to evaluate

in-sample and out-of-sample return predictability.

4.1. Return prediction models

Following the oil return predictability literature, we begin with an OLS predictive

regression model for crude oil returns as

rt+1 = αi + βixi, t + εt+1, i = 1, · · · , N, (7)

where rt+1 is the monthly log return on crude oil spot, xi,t is a predictor listed in Table 2,

and εt+1 is an error term.

Recent studies such as Baumeister and Kilian (2015), Zhang et al. (2018), among oth-

ers, find that forecast combination methods improve upon individual forecasts of crude

oil returns by generating more accurate and stable forecasts when compared to the ran-

dom walk in out-of-sample predictability tests. The reasons often cited for the use of

combination forecasts is that they provide a means to diversify estimation risk of the

parameters of the individual predictive models and uncertainty of these models resulting

from structural changes in the data (see, for example, Hendry and Clements, 2004). Be-

cause these two circumstances are difficult to model fully, the advantageous route is to

use combination forecasts.

14



Our combination forecasts, r̂Comb
t+1 , take the following form:

r̂Comb
t+1 =

N∑
i=1

wi, tr̂i, t+1, (8)

where r̂i, t+1 = α̂i + β̂ixi, t denotes the forecast of rt+1 generated at time t using the ith

predictor, wi, t is the weight assigned to the ith forecast with
∑N

i=1wi, t = 1 and N is the

number of predictor variables.

The combination forecasts we consider differ in the way weights are assigned to the

individual forecasts and include (i) the mean combination forecast which assigns equal

weights, wi, t = 1/N, i = 1, ..., N , to each of the individual forecasts; (ii) the trimmed

mean forecast sets the wi, t = 0 for the smallest and largest forecasts and wi, t = 1/(N −

2) for the remaining individual forecasts; (iii) the median combination forecast is the

sample median of the N individual forecasts; (iv) the weighted-mean forecast proposed

by Bates and Granger (1969) specifies the combination weights to be proportional to the

inverse of the estimated residual variance for the individual predictive regressions, w1,t =
1/(σ̂2

1, t)∑N
i=1 1/(σ̂2

i, t)
; and (v) the discounted mean squared forecast error (DMSFE) combination

forecast following Stock and Watson (2004). Here, the combination weights are specified

as functions of the historical performance of the individual predictive model forecasts

over a holdout out-of-sample period,

wdmsfe
i, t =

φ−1
i, t∑N

j=1 φ
−1
j, t

, φi, t =
t−1∑
s=m

θt−1−s (rs+1 − r̂i, s+1) , (9)

where m+ 1 indicates the start of the out-of-sample holdout period, and θ is a discount

factor.11 When θ < 1, greater importance is attached to the individual predictive model

forecast with lower mean square forecast error (MSFE). That is, the individual predictive

model that generates the smallest MSFE is assigned a greater weight because it signals

better forecasting performance. The special case where there is no discounting (θ = 1)

and forecasts are uncorrelated leads to the optimal combination weights in Bates and

Granger (1969). We use a θ value of 0.9. As our final combination method, we generate

11In practice, the DMSFE forecast requires a holdout out-of-sample period to estimate the combining
weights because there are no past individual forecasts to be used to form the weight at the start of the
forecast evaluation period. We therefore proceed by assigning equal weights to the first forecast over
the out-of-sample period.
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out-of-sample forecasts of crude oil returns by estimating a diffusion index model following

Stock and Watson (2002):

r̂pct+1 = α̂ +
K∑
k=1

β̂k, tFk, t, (10)

where Fk, t is the kth principal component estimated from the N predictors. Diffusion

indexes provide a convenient way of extracting common factor from a large number of

potential predictors. To keep the model parsimonious, the number of principal compon-

ents is set to a maximum of 3 and are selected using the adjusted R2 model selection

criterion.12

4.2. Statistical measures of return predictability

4.2.1. In-sample predictability

We evaluate the in-sample predictability of each our predictors for oil returns by

testing the significance of the slope coefficient, βi, in (7) estimated over the full sample.

Under the null hypothesis of no predictability, βi = 0, expected crude oil returns equals

a constant, α. We test H0 : βi = 0 against the HA : βi 6= 0 using a heteroskedasticity-

consistent t-statistic corresponding to β̂i, the OLS estimate of βi in (7). If the test rejects

the null, then β is significantly different from zero and therefore the predictor contains

useful information for explaining crude oil returns over the full sample.

4.2.2. Out-of-sample predictability

To generate out-of-sample forecasts of returns, we proceed as follows. Suppose T

observations are available for returns and predictors. We split the sample into two parts,

use the first R observations (January 1987 to December 1996) as the initial estimation

sample and the remaining P = T −R observations (January 1997 to December 2016) as

the out-of-sample period. Specifically, we first estimate our models using January 1987

to December 1996, and use the estimated coefficients to forecast crude oil returns for

January 1997:

r̂t+1 = α̂i + β̂ixi, t, i = 1, · · · , N, (11)

where α̂i and β̂i are the OLS estimates of αi and βi in (7), respectively, from regressing

{rt+1}R−1
t=1 on a constant and {xi,t}R−1

t=1 .

12We obtain similar results when we use the Akaike information criterion (AIC) or the Bayesian inform-
ation criterion (BIC).
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We next include January 1997 in the estimation sample and use the corresponding coef-

ficient estimates to forecast returns for February 1997. We proceed in this recursive

estimation fashion,13 re-estimating the model parameters using all previous observations,

until the end of the sample in December 2016, giving rise to a time-series of P one-step-

ahead out-of-sample forecasts of returns {r̂t+1}T−1
t=R .

Following the convention in the return predictability literature, we evaluate the out-

of-sample predictive accuracy of the forecasts from individual and combination models

relative to a benchmark model. We use the Campbell and Thompson (2008) out-of-

sample R2 statistic, R2
OS, which measures the proportional reduction in mean square

forecast error (MSFE) for an alternative forecast relative to the MSFE of the benchmark

model. That is

R2
OS = 1− MSFEmodel(r̂t)

MSFEbench(r̄t)
= 1−

∑T
t=R+1 (rt − r̂t)2∑T
t=R+1 (rt − r̄t)2

, (12)

where MSFEmodel = 1
T−R

∑T
t=R+1 (rt − r̂t)2, rt is the realized return at time t and r̂t(r̄t)

is the crude oil predictive (benchmark) model forecast at time t. A positive R2
OS value

implies that the individual or combination model generates a more accurate forecast

than the benchmark model. We evaluate the statistical significance of the R2
OS statistic

using the p-value of the MSFE-adjusted statistic of Clark and West (2007). This statistic

tests the null hypothesis that the MSFE of the benchmark forecast is less than or equal

to the MSFE of the individual or combination forecast against the one-sided (upper-

tailed) alternative hypothesis that the benchmark MSFE is greater than the MSFE of

the alternative forecast.

As a choice of benchmark, we use the random walk with drift (RWWD) forecast

which means crude oil returns are independent of the predictors. Accordingly, at the

end of month R, the forecasted return for month R + 1 is simply the average of the

prior returns over the estimation window. That is, r̄R+1 = α̂ = (1/R)
∑R

t=1 rt. This

benchmark forecast is a popular choice and has consistently been used across studies on

return predictability (see, for example, Lin et al., 2017; Ahmed and Tsvetanov, 2016;

Alquist and Kilian, 2010; Campbell and Thompson, 2008; and the references therein).

13Results based on a rolling window estimation approach (which are available upon request) are very
similar to those from the recursive approach.
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5. Return predictability analysis

5.1. In-sample test results

Table 3 reports the in-sample predictive regression model (Equation 7) estimation res-

ults for monthly average and end-of-month returns based on each of the 40 predictors over

the full sample period, January 1987 to December 2016. The table reports estimates of

the slope coefficient (β̂) and the associated heteroskedasticity-consistent standard errors

(se(β̂)), the statistic of the two-tailed alternative test (t-stat) for the significance of β̂, the

coefficient of determination (R2), and the Durbin-Watson statistic (DW) for testing the

null hypothesis of no serial correlation of order one in the estimated regression residuals.

Also reported in the table are averages of the absolute values of these statistics across

the macroeconomic and technical indicator variables, respectively.

Panel A of Table 3 reports results based on the macroeconomic variables. From the

table, almost all the estimates of the slope coefficients (and associated standard errors) for

monthly average returns are greater (less) than those of end-of-month returns. The t-test

for the null hypothesis of no-predictability of monthly average returns reveals a rejection

of the null at conventional levels for 13 macroeconomic predictors, namely lagged monthly

average return, futures return, PP, SCS, GSS, HSS, AUS, CAN, NZ, SA, CTBL, and BDI.

Of the predictors, only 8, namely the lagged end-of-month return, the futures return,

Basis, SCS, GSS, HSS, GOP, and CTBL are significant in-sample predictors for end-of-

month returns albeit with much lower t-statistics. The predictability findings are also

confirmed by the R2 statistic where higher values are recorded for monthly average returns

than for end-of-month returns. For example, the futures return displays a significant t-

stat (R2) of 11.17 (34.99%) for monthly average returns compared to 2.25 (2.27%) for

end-of-month returns. These findings are further supported by the average t-statistics

across the predictors which are significant for monthly average returns but not end-of-

month returns. For both return series, the DW statistic fails to reject the null of serial

correlation of order one in the estimated regression residuals for almost all predictors,

although the rejection is much stronger for monthly average returns.

Panel B of Table 3 reports the estimation results based on the technical indicator

variables. The null of no-predictability for monthly average crude oil returns is rejected

based on the t-test at conventional levels for 10 out of the 12 technical indicator predict-

ors, namely, MA(1, 9), MA(1, 12), MA(2, 9), MOM(3), MOM(6), MOM(9), MOM(12),
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VOL(1, 9), VOL(1, 12), VOL(2, 12). The t-test results for the end-of-month returns in-

dicates a failure to reject the null of no-predictability for all the 12 technical indicators

at conventional levels. This is supported by the comparatively low R2 statistics for end-

of-month returns. Essentially, what the test results tell us is that, these variables have

statistically significant predictive power for monthly average crude oil returns, whereas

none of the same variables contain any useful information for predicting end-of-month

crude oil returns beyond a constant.

[Insert Table 3 about here]

The different inference for return predictability depending on the returns data used,

especially the misleading inference for the predictability of monthly average returns, can

be attributed to the bias in the estimates of the first-order autocorrelation coefficient

and variance of monthly average returns reported in Table 1 leading to slope coefficient

estimates that are inefficient along with bias in the estimates of the associated standard

errors.

5.2. Out-of-sample test results

Tables 4 and 5 present the out-of-sample predictability results for monthly average

and end-of-month returns based on each of the macroeconomic and technical indicator

predictor variables individually and their combinations, respectively. The tables report

the MSFE, R2
OS, and the MSFE-adjusted statistic for the significance of the R2

OS. The

statistic tests the null hypothesis that the RWWD forecast MSFE is less than or equal

to the MSFE of the competing forecast against the one-sided (upper tailed) alternative

hypothesis that the RWWD forecast MSFE is greater than the MSFE of the competing

forecast. The tables also report averages of these statistics across the macroeconomic and

technical indicators variables, respectively. The forecast evaluation period is January 1997

to December 2016.

Panel A of Table 4 report results for the return forecasts based on the individual

macroeconomic variables. As can be seen from the table, the 10 macroeconomic variables

that were found to be significant in-sample predictors for monthly average returns are also

significant in the out-of-sample tests, and vice versa, at the same significance level based

on a one-sided alternative test. The results for the combination forecasts in Panel B of
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Table 4 indicate that all the combination forecasts add substantial improvements in out-

of-sample predictive performance over the RWWD forecast. All combination forecasts of

monthly average returns have R2
OS values that are statistically significant at the 1% level.

On the contrary, only two of the variables found to be significant in-sample predictors

for end-of-month returns, namely Basis and CTBL, are significant in the out-of-sample

tests of predictability at the 10% and 5% levels, respectively. All other individual and

combination forecasts are statistically insignificant and fail to add any improvement to

the forecast from the RWWD model. This perhaps is not surprising considering that it

is well documented in the return predictability literature that most individual macroe-

conomic variables that pass in-sample tests of predictability fail in out-of-sample tests

(see, Welch and Goyal, 2008). Not even the combination forecasts, which are expected to

guard against model uncertainty and parameter instability of individual predictive model

forecasts, display statistically significant predictability for end-of-month returns. The

reported findings are further supported by the average R2
OS across the predictors which

are statistically significant for monthly average returns but not end-of-month returns.

[Insert Table 4 about here]

Table 5 reports results for individual and combination forecasts based on the 12 tech-

nical indicators. All the 8 out of the 10 variables that display significant in-sample

predictability for monthly average returns are also significant in out-of-sample tests of

predictability. The R2
OS values for all combination forecasts are also significant at the

5% level offering substantial improvement over the performance of most of the individual

forecasts. Consistent with the in-sample predictability tests, R2
OS values for all the in-

dividual and combination forecasts of technical indicators for end-of-month returns are

statistically insignificant. The lack of predictability for end-of-month returns based on

the technical indicators provides a strong warning about the dangers of using monthly

averaged returns.

[Insert Table 5 about here]

Overall, our findings concerning in-sample and out-of-sample tests of monthly average

return predictability confirm the predictions and findings of Working (1960), Schwert

(1990), Wilson et al. (2001), and the voluminous literature that highlight how the biases in
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the estimates of the first-order autocorrelation coefficient and variance of monthly average

returns and the associated econometric estimation problems could influence hypothesis

tests of return predictability.

6. Remedies for the spurious autocorrelation in monthly average returns

In this section, we consider two remedial measures to deal with the biased estimate

of the first-order autocorrelation of monthly average returns and the associated econo-

metric issues of inefficiencies of the OLS slope coefficient estimates and biased standard

errors when testing for return predictability highlighted thus far. In what follows, we

detail and present predictability results using test statistics robust to heteroskedasticity

and autocorrelation in the estimated predictive regression residuals, and an alternative

model specification and estimation approach that directly deals with the presence of serial

correlation in the regression errors.14

6.1. Tests for predictability using HAC t-statistics

The Durbin-Watson statistics reported for the in-sample predictability results in

Table 3 for testing the null hypothesis of no serial correlation of order one in the estimated

regression residuals failed to reject the null in favour of the alternative hypothesis. As

suggested by Greene (2017), if the researcher is uncomfortable with explicitly modelling

the serial correlation because of specification issues, she can test the significance of β us-

ing t-statistic computed using heteroskedasticity-and-autocorrelation-consistent (HAC)

standard errors à la Newey and West (1987) with 3 or 4 lags.

Table 6 reports in-sample predictability results for monthly average returns using

heteroskedasticity and autocorrelation-consistent t-statistics. As a basis for comparison,

the table also repeat the results for end-of-month returns that are generated using the

OLS estimators of the slope coefficients and heteroskedasticity-consistent standard er-

rors reported in Table 3. As can be seen from the table, the earlier reported findings

14We have also included in the Internet Appendix as an additional remedy predictability results based
on filtered returns. That is, returns generated by a filtering procedure in Schwert (1990) that adjust
the biased estimates of variance and first-order autocorrelation coefficient of monthly average returns
to bring them to levels closer to those of end-of-month returns. Although the procedure work well in
dealing with the biases in returns, they do not change very much our earlier findings of predictability
of monthly average returns. This is not surprising since as noted by Schwert, the procedure does not
deal suitably with cross-correlations, which is important in our regression setting.
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of monthly average return predictability based on the macroeconomic and technical in-

dicator variables are robust to correcting test statistics for residual autocorrelation.15

Clearly, correcting test statistics for autocorrelation using HAC standard errors does not

weaken the evidence of predictability for monthly average returns to levels similar to those

for end-of-month returns, indicating that it is not sufficient to alleviate the econometric

issues associated with the use of monthly average returns.

[Insert Table 6 about here]

6.2. Feasible generalized least squares estimation

It is well known that serial correlation in the estimated regression residuals has two

consequences for the OLS estimators for β. That is, (a) OLS is no longer the best linear

unbiased estimator and thus inefficient and (b) the usual OLS standard errors are biased.

Against this backdrop, the generalized least squares (GLS) estimator of β is the most

efficient. The difficulty with implementing GLS estimation is not knowing the true order

of autocorrelation. This is not a concern in the present context because as can be seen

from Figure 1, the autocorrelation in monthly average returns is of the first order.

To test for in-sample predictability, we implement the feasible GLS estimation based

on the Prais and Winsten (1954) estimator that includes the first observation of the

return series. Since this procedure is well known, we leave out the details and refer the

reader to Chapter 20 of Greene (2017). The model is given by:

rt+1 = αi + βixi,t + εt+1,

εt+1 = ρiεt + ut,
(13)

where ρi < 1 is the first-order autocorrelation coefficient.

The in-sample predictability results for monthly average returns based on the mac-

roeconomic and technical indicator predictor variables are reported in Table 7. The signi-

15We note that to deal with the efficiency loss in the OLS estimator, one would need a larger sample size,
say 500 or more monthly observations. It is possible that if the sample were large enough, predictability
findings from monthly average and end-of-month returns would be fairly similar. We address this issue
and increase our sample size by using weekly data. We estimated the same predictive regressions using
weekly data, enabling us to have a much larger sample. The predictors were limited to only market-
based variables (that is, 19 macroeconomic variables and all our 12 technical indicators) for which real
time data is at the weekly frequency. The in-sample and out-of-sample predictability results (which
are available upon request) from this exercise do not alter our earlier conclusions based on monthly
data.
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ficance of the slope coefficients are tested using heteroskedasticity-consistent t-statistics.

We also include, for comparison, results for end-of-month returns generated using the

OLS estimators for the slope coefficients and heteroskedasticity-consistent standard er-

rors reported in Table 3. As can be seen from the table, the evidence of predictability

slightly weakens but do not resemble those for end-of-month returns. The p-values as-

sociated with DW statistic, however, indicate a failure to reject the null hypothesis of

no serial correlation of order one in the estimated regression residuals in favour of the

alternative for all predictors, giving support that the GLS estimation procedure remedies

the residual autocorrelation.

The out-of-sample predictability for monthly average returns based on predictor vari-

ables are reported in Tables 8 and 9, respectively. The tables also include, for comparison,

out-of-sample results for end-of-month returns that are generated using the OLS estim-

ators for the slope coefficients earlier reported. As can be seen from the tables, the

predictability findings for monthly average returns are largely consistent with the earlier

findings for monthly average returns based on their OLS counterparts reported in Tables 4

and 5 albeit slightly weaker and nowhere close to those of end-of-month returns. It is

also interesting to note that despite the negative R2
OS statistics for almost individual and

combination forecasts of monthly average returns, the MSFE-adjusted statistics indicate

that their MSFEs are significantly less than that of the benchmark random walk with

drift forecast. This might seem strange at first, but as noted by Clark and West (2007)

this is possible especially when comparing nested model forecasts.

Overall, while the GLS estimation procedure only slightly weaken the evidence of

predictability for monthly average returns, it does not bring it to levels similar to those

for end-of-month returns, indicating that the procedure does not completely remedy

the econometric issues associated with the use of monthly average returns in predictive

regressions earlier documented.

[Insert Table 7 about here]

[Insert Table 8 about here]

[Insert Table 9 about here]
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7. Conclusions

In this paper, we re-examine the evidence for monthly crude oil return predictabil-

ity using 40 individual macroeconomic and technical indicator variables. Two sets of

monthly crude oil spot returns data are considered, namely monthly average returns

(calculated from within-month averages of daily closing prices) and end-of-month returns

(calculated from end-of-month closing prices). The former is the data set of choice used

in almost all studies on crude oil return predictability, while the latter is ubiquitous for

most predictability studies on stocks, bonds, currencies and other commodities.

Using data on WTI crude oil returns and our set of predictors from January 1987

to December 2016, we find that most of the individual macroeconomic and technical in-

dicator variables and their combinations display statistically significant predictive power

for monthly average returns in both in- and out-of-sample tests of predictability. These

findings are consistent with the results in the extant literature on crude oil return pre-

dictability. On the contrary, these predictability findings are completely reversed when

we use end-of-month returns as the dependent variables in our predictive models. Spe-

cifically, we find no convincing evidence of predictive ability of the forecasting variables

for end-of-month returns in both in-sample and out-of sample tests of predictability.

We argue that the evidence for monthly average crude oil return predictability docu-

mented in previous studies appears more significant than it really is, and is an artefact

of inferential biases concerning the statistical properties of crude oil spot returns induced

by using averaged crude oil price data to calculate returns. Specifically, averaged returns

data introduces a spurious upward bias in the estimate of the first-order autocorrela-

tion coefficient in returns, and generates a downward bias in estimates of variance and

covariance of returns with predictors. As a result, when used in predictive regressions,

estimated slope coefficients are inefficient and associated standard errors are biased lead-

ing to false inference about the true extent of predictability. These findings accord with

the results in Working (1960), Cowles (1960), Daniels (1966), Rosenberg (1971), Schwert

(1990), Wilson et al. (2001), and the literature on the spurious regression problem (see

Granger and Newbold, 1974; Granger et al., 2001; Ferson et al., 2003) that highlights how

these statistical biases could lead to false inference when testing for return predictability.

The inferential biases concerning the statistical properties of crude oil spot returns

and the misleading econometric inference for return predictability induced by averaging
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the price data are so severe that remedial measures, such as calculating test statistics

using heteroskedasticity and autocorrelation consistent standard errors and implementing

feasible generalized least squares estimation to generate more efficient slope coefficient

estimates, fail to comprehensively reverse the misleading inference for crude oil return

predictability.

Our paper highlights the econometric issues associated with the use of monthly average

returns in predictive regressions and how they invalidate test statistics for testing the

hypotheses of return predictability if ignored by econometricians.
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Figure 1: Sample autocorrelation functions for crude oil returns

Notes. This figure plots the the sample autocorrelation functions for monthly average and end-of-month
crude oil returns. The sample period is 1987:01-2016:12.

Figure 2: Sample autocorrelation function for squared crude oil returns

Notes. This figure plots the the sample autocorrelation functions for squared monthly average and
end-of-month crude oil returns. The sample period is 1987:01-2016:12.
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Table 3: In-sample individual predictive regression estimation results

Monthly average returns End-of-month returns

Predictor β̂ se(β̂) t-stat R2 (%) DW β̂ se(β̂) t-stat R2 (%) DW

Panel A: Macroeconomic variables

Lagged return 0.286 0.065 4.40*** 8.19 1.98 0.150 0.067 2.25** 2.24 1.98
Futures return 0.529 0.047 11.17*** 34.99 2.32 0.150 0.066 2.25** 2.27 1.98
Basis 0.087 0.259 0.33 0.04 1.41*** =0.558 0.248 =2.25** 1.44 1.64***
HP 0.036 0.045 0.79 0.17 1.42*** =0.040 0.049 =0.81 0.17 1.68***
PP 0.392 0.086 4.55*** 5.00 1.53*** 0.151 0.101 1.49 0.60 1.75***
OI 0.049 0.066 0.73 0.16 1.42*** =0.003 0.075 =0.04 0.00 1.69***
SCS 0.520 0.047 10.96*** 34.07 2.31 0.145 0.066 2.19** 2.15 1.98
GSS 0.521 0.048 10.94*** 34.10 2.31 0.145 0.066 2.18** 2.14 1.97
HSS 0.519 0.047 11.00*** 33.98 2.31 0.146 0.066 2.21** 2.18 1.98
GOI =0.119 0.358 =0.33 0.03 1.41*** 0.521 0.453 1.15 0.41 1.68***
GOP =0.543 0.473 =1.15 0.42 1.44*** =1.147 0.670 =1.71* 1.53 1.72***
AUS 0.544 0.149 3.66*** 4.84 1.55*** 0.164 0.180 0.91 0.36 1.75***
CAN 0.855 0.223 3.84*** 5.29 1.56*** 0.167 0.241 0.69 0.16 1.73***
NZ 0.296 0.149 1.99** 1.51 1.49*** 0.031 0.159 0.19 0.01 1.70***
SA 0.296 0.125 2.37** 2.08 1.47*** 0.103 0.141 0.73 0.20 1.71***
S&P 500 0.097 0.135 0.72 0.26 1.42*** 0.072 0.150 0.48 0.12 1.70***
TBL 0.088 0.190 0.46 0.07 1.41*** 0.068 0.206 0.33 0.04 1.69***
CTBL 7.324 2.975 2.46** 2.76 1.45*** 8.116 3.268 2.48** 2.75 1.71***
YS =0.373 0.369 =1.01 0.46 1.42*** =0.303 0.353 =0.86 0.25 1.69***
DFY =0.681 2.028 =0.34 0.10 1.42*** =0.123 1.782 =0.07 0.00 1.69***
TMS1Y =0.328 1.759 =0.19 0.01 1.41*** =0.053 1.915 =0.03 0.00 1.69***
TMS2Y 0.039 0.983 0.04 0.00 1.41*** 0.103 1.088 0.09 0.00 1.69***
TMS5Y =0.988 1.002 =0.99 0.26 1.41*** =0.882 1.079 =0.82 0.17 1.69***
VIX =0.118 0.085 =1.38 1.22 1.43*** =0.093 0.083 =1.11 0.61 1.70***
REA 0.012 0.019 0.60 0.15 1.42*** 0.008 0.020 0.41 0.06 1.69***
BDI 0.081 0.033 2.47** 3.36 1.49*** 0.045 0.035 1.30 0.84 1.74***
INFL 0.530 2.105 0.25 0.03 1.41*** 0.052 1.963 0.03 0.00 1.69***
CAPUTL 0.828 0.783 1.06 0.56 1.43*** 0.127 0.810 0.16 0.01 1.69***
INDPRO =0.019 0.167 =0.11 0.00 1.41*** 0.038 0.167 0.23 0.01 1.69***
Average 0.590 0.511 2.77*** 6.00 1.58*** 0.473 0.537 1.02 0.71 1.75***

Panel B: Technical indicator variables

MA(1, 9) 0.0259 0.0088 2.95*** 2.44 1.49*** =0.0025 0.0098 =0.26 0.02 1.68***
MA(1, 12) 0.0279 0.0089 3.15*** 2.82 1.50*** 0.0074 0.0098 0.75 0.16 1.71***
MA(2, 9) 0.0165 0.0090 1.83* 0.98 1.45*** =0.0011 0.0098 =0.11 0.00 1.69***
MA(2, 12) 0.0104 0.0092 1.14 0.39 1.43*** =0.0045 0.0099 =0.46 0.06 1.68***
MOM(3) 0.0372 0.0087 4.30*** 5.00 1.58*** 0.0106 0.0096 1.09 0.33 1.73***
MOM(6) 0.0180 0.0090 1.99** 1.17 1.45*** =0.0050 0.0099 =0.50 0.07 1.68***
MOM(9) 0.0163 0.0089 1.82* 0.94 1.42*** =0.0060 0.0098 =0.62 0.11 1.68***
MOM(12) 0.0221 0.0089 2.48** 1.75 1.46*** 0.0061 0.0098 0.62 0.11 1.70***
VOL(1, 9) 0.0312 0.0092 3.40*** 3.45 1.51*** =0.0012 0.0101 =0.12 0.00 1.69***
VOL(1, 12) 0.0273 0.0095 2.88*** 2.61 1.50*** 0.0039 0.0103 0.38 0.04 1.70***
VOL(2, 9) 0.0109 0.0092 1.18 0.43 1.44*** =0.0015 0.0101 =0.14 0.01 1.69***
VOL(2, 12) 0.0192 0.0093 2.08** 1.32 1.45*** 0.0048 0.0102 0.47 0.07 1.70***
Average 0.0219 0.0090 2.43** 1.94 1.47*** 0.0045 0.0099 0.46 0.08 1.69***

Notes. This table reports the in-sample OLS estimation results for the predictive regression models of crude oil returns in
Equation (7). The return series are monthly average returns and end-of-month returns. The table reports the slope coeffi-

cient, β̂, and the associated heteroskedasticity-consistent standard errors, se(β̂), the statistic for the two-tailed alternative

test, t-stat, for the significance of β̂. R2 is the coefficient of determination, and DW is the Durbin-Watson statistic for
testing the null hypothesis of no serial correlation of order one in the estimated regression residuals. The variable Average
is the average of the absolute values of beta estimates, standard errors, t-stats, R2, and DW statistics across the predictors.
Results are reported for the full sample period 1987:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and
1% levels, respectively.
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Table 4: Out-of-sample forecasting results: macroeconomic variables

Monthly average returns End-of-month returns

MSFE- MSFE-
Predictor MSFE R2

OS (%) adjusted MSFE R2
OS (%) adjusted

RWWD 75.51 91.51

Panel A: Individual predictive model forecasts

Futures return 52.92 29.92 5.73*** 91.27 0.26 1.07
Basis 76.01 =0.67 =0.27 90.57 1.02 1.57*
HP 76.79 =1.70 1.22 91.83 =0.35 =0.35
PP 73.47 2.69 2.84*** 91.62 =0.13 0.45
OI 75.61 =0.14 =0.28 91.89 =0.41 =1.65
SCS 53.82 28.72 5.67*** 91.50 0.01 0.94
GSS 53.80 28.75 5.67*** 91.50 0.00 0.94
HSS 53.89 28.63 5.67*** 91.50 0.01 0.95
GOI 75.78 =0.36 =0.89 92.14 =0.69 =0.51
GOP 75.67 =0.21 0.14 92.56 =1.15 0.17
AUS 72.03 4.61 2.60*** 93.06 =1.69 =0.65
CAN 71.23 5.67 3.20*** 92.49 =1.07 =0.87
NZ 75.30 0.27 1.11 93.87 =2.58 =1.56
SA 74.25 1.67 2.29** 92.32 =0.89 =0.53
S&P 500 76.96 =1.92 =0.44 92.30 =0.86 =0.22
TBL 76.39 =1.17 =1.34 92.44 =1.02 =1.51
CTBL 74.21 1.72 1.52* 89.69 1.98 1.88**
YS 76.81 =1.72 =0.48 92.93 =1.55 =0.82
DFY 78.40 =3.83 =0.07 93.85 =2.57 =0.31
TMS1Y 76.13 =0.82 =0.75 92.17 =0.73 =1.02
TMS2Y 75.94 =0.58 =1.29 92.06 =0.61 =1.36
TMS5Y 76.74 =1.63 =0.32 92.85 =1.47 =0.60
VIX 75.38 0.17 0.57 92.02 =0.57 0.37
REA 76.60 =1.45 =0.42 92.90 =1.52 =0.89
BDI 73.78 2.29 1.71** 92.91 =1.53 0.10
INFL 76.61 =1.46 =0.29 92.59 =1.19 =1.10
CAPUTIL 76.21 =0.92 0.53 92.42 =0.99 =1.03
INDPRO 76.07 =0.74 =0.81 92.07 =0.61 =1.46
Average 72.39 4.14 1.17 92.19 =0.75 =0.28

Panel B: Combination forecasts

Mean 68.72 8.99 4.79*** 91.47 0.04 0.27
Median 74.55 1.27 2.55*** 91.56 =0.06 =0.18
Trimmed mean 69.25 8.29 4.78*** 91.44 0.08 0.35
Weighted mean 66.71 11.66 5.06*** 91.47 0.04 0.28
DMSFE (θ = 0.9) 66.78 11.56 4.51*** 91.49 0.01 0.23
PC (ic = R2) 57.83 23.41 5.01*** 92.46 =1.04 0.71
Average 67.31 10.86 4.45*** 91.65 =0.16 0.28

Notes. This table reports out-of-sample results for the individual and combination forecasts of crude oil returns based
on 28 macroeconomic variables. RWWD is the random walk with drift benchmark forecast. MSFE is the mean squared
forecast error. The R2

OS statistic measures the proportional reduction in MSFE for the competing forecasts given in the
first column relative to the RWWD forecast. Statistical significance for the R2

OS statistic is based on the p-value for the
MSFE-adjusted statistic of Clark and West (2007). This statistic tests the null hypothesis that the RWWD forecast MSFE
is less than or equal to the MSFE of the competing forecast against the one-sided (upper tailed) alternative hypothesis that
the RWWD forecast MSFE is greater than the MSFE of the competing forecast. The variable Average is the average of the
MSFE, R2

OS , and MSFE-adjusted statistics across the predictors. Results are reported for monthly average returns and
end-of-month returns. The out-of-sample forecast evaluation period is 1997:01-2016:12. *, **, and *** indicate significance
at the 10%, 5%, and 1% levels, respectively.
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Table 5: Out-of-sample forecasting results: technical indicators

Monthly average returns End-of-month returns

MSFE- MSFE-
Predictor MSFE R2

OS (%) adjusted MSFE R2
OS (%) adjusted

RWWD 75.51 91.51

Panel A: Individual predictive model forecasts

MA(1, 9) 73.93 2.08 2.11** 91.93 =0.47 =0.98
MA(1, 12) 73.83 2.22 2.15** 91.78 =0.30 =0.24
MA(2, 9) 74.87 0.84 1.28 92.33 =0.90 =0.73
MA(2, 12) 75.63 =0.16 0.02 92.48 =1.07 =1.15
MOM(3) 72.73 3.68 2.88*** 92.16 =0.72 =0.50
MOM(6) 74.75 1.01 1.34* 92.37 =0.94 =0.54
MOM(9) 74.91 0.79 1.23 92.19 =0.74 =0.84
MOM(12) 74.68 1.09 1.54* 91.83 =0.35 =0.71
VOL(1, 9) 73.29 2.94 2.51*** 92.03 =0.58 =0.80
VOL(1, 12) 73.97 2.04 1.99** 91.95 =0.48 =1.92
VOL(2, 9) 75.72 =0.28 =0.16 92.72 =1.33 =1.33
VOL(2, 12) 74.53 1.29 1.63* 92.18 =0.74 =1.58
Average 74.40 1.46 1.54* 92.16 =0.72 =0.94

Panel B: Combination forecasts

Mean 73.86 2.18 2.19** 92.00 =0.54 =1.85
Median 73.82 2.23 2.21** 92.13 =0.69 =1.63
Trimmed mean 73.93 2.08 2.11** 92.02 =0.56 =1.71
Weighted mean 73.85 2.20 2.20** 92.01 =0.55 =1.85
DMSFE (θ = 0.9) 73.93 2.09 2.10** 92.13 =0.68 =2.47
PC (ic = R2) 74.49 1.35 1.88** 93.06 =1.70 =1.45
Average 73.98 2.02 2.11** 92.23 =0.78 =1.83

Notes. This table reports out-of-sample results for the individual and combination forecasts of crude oil
returns based on 12 technical indicator variables. RWWD is the random walk with drift benchmark
forecast. MSFE is the mean squared forecast error. The R2

OS statistic measures the proportional
reduction in MSFE for the competing forecasts given in the first column relative to the RWWD forecast.
Statistical significance for the R2

OS statistic is based on the p-value for the MSFE-adjusted statistic of
Clark and West (2007). This statistic tests the null hypothesis that the RWWD forecast MSFE is less
than or equal to the MSFE of the competing forecast against the one-sided (upper tailed) alternative
hypothesis that the RWWD forecast MSFE is greater than the MSFE of the competing forecast. The
variable Average is the average of the MSFE, R2

OS , and MSFE-adjusted statistics across the predictors.
Results are reported for monthly average returns and end-of-month returns. The out-of-sample forecast
evaluation period is 1997:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively.
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Table 6: In-sample predictive regression estimation results with HAC standard errors

Monthly average returns End-of-month returns

Predictor β̂ se(β̂) t-stat R2 (%) β̂ se(β̂) t-stat R2 (%)

Panel A: Macroeconomic variables

Lagged return 0.286 0.069 4.14*** 8.19 0.150 0.067 2.25** 2.24
Futures return 0.529 0.048 11.01*** 34.99 0.150 0.066 2.25** 2.27
Basis 0.087 0.216 0.40 0.04 =0.558 0.248 =2.25** 1.44
HP 0.036 0.057 0.63 0.17 =0.040 0.049 =0.81 0.17
PP 0.392 0.086 4.58*** 5.00 0.151 0.101 1.49 0.60
OI 0.049 0.065 0.75 0.16 =0.003 0.075 =0.04 0.00
SCS 0.520 0.047 10.97*** 34.07 0.145 0.066 2.19** 2.15
GSS 0.521 0.047 10.96*** 34.10 0.145 0.066 2.18** 2.14
HSS 0.519 0.047 10.97*** 33.98 0.146 0.066 2.21** 2.18
GOI =0.119 0.377 =0.32 0.03 0.521 0.453 1.15 0.41
GOP =0.543 0.432 =1.26 0.42 =1.147 0.670 =1.71* 1.53
AUS 0.544 0.187 2.91*** 4.84 0.164 0.180 0.91 0.36
CAN 0.855 0.232 3.69*** 5.29 0.167 0.241 0.69 0.16
NZ 0.296 0.193 1.54 1.51 0.031 0.159 0.19 0.01
SA 0.296 0.147 2.01** 2.08 0.103 0.141 0.73 0.20
S&P 500 0.097 0.174 0.55 0.26 0.072 0.150 0.48 0.12
TBL 0.088 0.229 0.38 0.07 0.068 0.206 0.33 0.04
CTBL 7.324 3.976 1.84* 2.76 8.116 3.268 2.48** 2.75
YS =0.373 0.484 =0.77 0.46 =0.303 0.353 =0.86 0.25
DFY =0.681 2.804 =0.24 0.10 =0.123 1.782 =0.07 0.00
TMS1Y =0.328 2.457 =0.13 0.01 =0.053 1.915 =0.03 0.00
TMS2Y 0.039 1.228 0.03 0.00 0.103 1.088 0.09 0.00
TMS5Y =0.988 1.156 =0.85 0.26 =0.882 1.079 =0.82 0.17
VIX =0.118 0.115 =1.03 1.22 =0.093 0.083 =1.11 0.61
REA 0.012 0.021 0.57 0.15 0.008 0.020 0.41 0.06
BDI 0.081 0.044 1.84* 3.36 0.045 0.035 1.30 0.84
INFL 0.530 2.327 0.23 0.03 0.052 1.963 0.03 0.00
CAPUTIL 0.828 0.898 0.92 0.56 0.127 0.810 0.16 0.01
INDPRO =0.019 0.175 =0.11 0.00 0.038 0.167 0.23 0.01
Average 0.590 0.632 2.61*** 6.00 0.473 0.537 1.02 0.71

Panel B: Technical indicator variables

MA(1,9) 0.0259 0.0084 3.08*** 2.44 =0.0025 0.0098 =0.26 0.02
MA(1,12) 0.0279 0.0088 3.16*** 2.82 0.0074 0.0098 0.75 0.16
MA(2,9) 0.0165 0.0086 1.93* 0.98 =0.0011 0.0098 =0.11 0.00
MA(2,12) 0.0104 0.0090 1.17 0.39 =0.0045 0.0099 =0.46 0.06
MOM(3) 0.0372 0.0090 4.11*** 5.00 0.0106 0.0096 1.09 0.33
MOM(6) 0.0180 0.0093 1.94* 1.17 =0.0050 0.0099 =0.50 0.07
MOM(9) 0.0163 0.0089 1.82* 0.94 =0.0060 0.0098 =0.62 0.11
MOM(12) 0.0221 0.0087 2.53** 1.75 0.0061 0.0098 0.62 0.11
VOL(1,9) 0.0312 0.0093 3.37*** 3.45 =0.0012 0.0101 =0.12 0.00
VOL(1,12) 0.0273 0.0094 2.92*** 2.61 0.0039 0.0103 0.38 0.04
VOL(2,9) 0.0109 0.0097 1.12 0.43 =0.0015 0.0101 =0.14 0.01
VOL(2,12) 0.0192 0.0097 1.98** 1.32 0.0048 0.0102 0.47 0.07
Average 0.0219 0.0091 2.43** 1.94 0.0045 0.0099 0.46 0.08

Notes. This table reports the in-sample estimation results for the predictive regression models of crude oil returns in
Equation (7). The return series is either monthly average or end-of-month returns. The table reports the slope coefficient,

β̂, and the associated Newey and West (1987) heteroskedasticity-and-autocorrelation-consistent standard errors, se(β̂),

computed with 4 lags, the statistic for the two-tailed alternative test, t-stat, for the significance of β̂. For comparison,
we repeat the results for end-of-month returns that are generated using the OLS estimators for the slope coefficients and
heteroskedasticity-consistent standard errors reported in Table 3. The variable Average is the average of the absolute values
of beta estimates, standard errors, t-stats, and R2 statistics across the predictors. Results are computed for the full sample
period 1987:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: In-sample FGLS regression model estimation results

Monthly average returns End-of-month returns

Predictor β̂ se(β̂) t-stat R2 (%) DW β̂ se(β̂) t-stat R2 (%) DW

Panel A: Macroeconomic variables

Lagged return 0.297 0.065 4.57*** 8.81 1.97 0.150 0.067 2.25** 2.24 1.98
Futures return 0.649 0.047 13.88*** 49.77 2.04 0.150 0.066 2.25** 2.27 1.98
Basis 0.057 0.311 0.18 0.01 1.99 =0.558 0.248 =2.25** 1.44 1.64***
HP 0.023 0.053 0.43 0.04 1.99 =0.040 0.049 =0.81 0.17 1.68***
PP 0.252 0.078 3.25*** 2.64 2.02 0.151 0.101 1.49 0.60 1.75***
OI 0.007 0.056 0.13 0.00 1.99 =0.003 0.075 =0.04 0.00 1.69***
SCS 0.640 0.047 13.54*** 48.69 2.04 0.145 0.066 2.19** 2.15 1.98
GSS 0.640 0.047 13.49*** 48.69 2.04 0.145 0.066 2.18** 2.14 1.97
HSS 0.639 0.047 13.63*** 48.62 2.04 0.146 0.066 2.21** 2.18 1.98
GOI =0.038 0.332 =0.11 0.00 1.99 0.521 0.453 1.15 0.41 1.68***
GOP =0.109 0.353 =0.31 0.02 1.99 =1.147 0.670 =1.71* 1.53 1.72***
AUS 0.329 0.129 2.55** 2.03 1.98 0.164 0.180 0.91 0.36 1.75***
CAN 0.531 0.197 2.70*** 2.43 1.99 0.167 0.241 0.69 0.16 1.73***
NZ 0.093 0.123 0.75 0.18 1.99 0.031 0.159 0.19 0.01 1.70***
SA 0.166 0.108 1.54 0.76 1.98 0.103 0.141 0.73 0.20 1.71***
S&P 500 0.037 0.110 0.34 0.04 1.99 0.072 0.150 0.48 0.12 1.70***
TBL 0.083 0.250 0.33 0.04 1.99 0.068 0.206 0.33 0.04 1.69***
CTBL 6.361 3.033 2.10** 1.85 1.99 8.116 3.268 2.48** 2.75 1.71***
YS =0.457 0.479 =0.95 0.39 2.00 =0.303 0.353 =0.86 0.25 1.69***
DFY =0.584 2.504 =0.23 0.04 1.99 =0.123 1.782 =0.07 0.00 1.69***
TMS1Y =0.460 2.184 =0.21 0.01 1.99 =0.053 1.915 =0.03 0.00 1.69***
TMS2Y 0.032 1.288 0.03 0.00 1.99 0.103 1.088 0.09 0.00 1.69***
TMS5Y =1.240 1.371 =0.90 0.23 1.99 =0.882 1.079 =0.82 0.17 1.69***
VIX =0.123 0.092 =1.33 0.90 2.00 =0.093 0.083 =1.11 0.61 1.70***
REA 0.008 0.027 0.28 0.04 1.99 0.008 0.020 0.41 0.06 1.69***
BDI 0.053 0.029 1.85* 1.55 1.98 0.045 0.035 1.30 0.84 1.74***
INFL 0.370 2.223 0.17 0.01 1.99 0.052 1.963 0.03 0.00 1.69***
CAPUTIL 0.341 0.690 0.49 0.10 1.99 0.127 0.810 0.16 0.01 1.69***
INDPRO =0.074 0.111 =0.67 0.05 1.99 0.038 0.167 0.23 0.01 1.69***
Average 0.507 0.565 2.79*** 7.52 2.00 0.473 0.537 1.02 0.71 1.75***

Panel B: Technical indicator variables

MA(1,9) 0.0139 0.0102 1.36 0.56 1.98 =0.0025 0.0098 =0.26 0.02 1.68***
MA(1,12) 0.0173 0.0105 1.65* 0.82 1.98 0.0074 0.0098 0.75 0.16 1.71***
MA(2,9) 0.0060 0.0108 0.56 0.09 1.98 =0.0011 0.0098 =0.11 0.00 1.69***
MA(2,12) =0.0006 0.0104 =0.06 0.00 1.99 =0.0045 0.0099 =0.46 0.06 1.68***
MOM(3) 0.0227 0.0095 2.39** 1.63 1.97 0.0106 0.0096 1.09 0.33 1.73***
MOM(6) 0.0090 0.0099 0.91 0.23 1.98 =0.0050 0.0099 =0.50 0.07 1.68***
MON(9) 0.0152 0.0100 1.51 0.63 1.98 =0.0060 0.0098 =0.62 0.11 1.68***
MOM(12) 0.0152 0.0102 1.50 0.63 1.99 0.0061 0.0098 0.62 0.11 1.70***
VOL(1,9) 0.0199 0.0090 2.22** 1.30 1.98 =0.0012 0.0101 =0.12 0.00 1.69***
VOL(1,12) 0.0149 0.0098 1.52 0.67 1.98 0.0039 0.0103 0.38 0.04 1.70***
VOL(2,9) =0.0037 0.0103 =0.36 0.04 1.99 =0.0015 0.0101 =0.14 0.01 1.69***
VOL(2,12) 0.0103 0.0109 0.95 0.27 1.98 0.0048 0.0102 0.47 0.07 1.70***
Average 0.0124 0.0101 1.25 0.57 1.98 0.0045 0.0099 0.46 0.08 1.69***

Notes. This table reports the in-sample feasible generalized least squares (FGLS) estimation results for the predictive
regression model in Equation (13) of monthly average and end-of-month crude oil returns. The table reports the slope

coefficient, β̂, and the associated heteroskedasticity-consistent standard errors, se(β̂), the statistic for the two-tailed altern-

ative test, t-stat, for the significance of β̂. R2 is the coefficient of determination, and DW is the Durbin-Watson statistic
for testing the null hypothesis of no serial correlation of order one in the estimated regression residuals. For comparison,
we repeat the results for end-of-month returns that are generated using the OLS estimators for the slope coefficients and
heteroskedasticity-consistent standard errors reported in Table 3. The variable Average is the average of the absolute values
of beta estimates, standard errors, t-stats, R2, and DW statistics across the predictors. Results are reported for the full
sample period 1987:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 8: Out-of-sample forecasting results using FGLS estimation: macroeconomic
variables

Monthly average returns End-of-month returns

MSFE- MSFE-
Predictor MSFE R2

OS (%) adjusted MSFE R2
OS (%) adjusted

RWWD 75.51 91.51

Panel A: Individual predictive model forecasts

Futures return 57.61 23.70 5.77*** 91.27 0.26 1.07
Basis 76.71 =1.59 1.51* 90.57 1.02 1.57*
HP 76.13 =0.83 2.04** 91.83 =0.35 =0.35
PP 71.37 5.48 2.86*** 91.62 =0.13 0.45
OI 76.31 =1.06 1.52* 91.89 =0.41 =1.65
SCS 58.53 22.49 5.69*** 91.50 0.01 0.94
GSS 58.46 22.58 5.69*** 91.50 0.00 0.94
HSS 58.65 22.32 5.69*** 91.50 0.01 0.95
GOI 76.64 =1.50 1.47* 92.14 =0.69 =0.51
GOP 76.27 =1.01 1.52* 92.56 =1.15 0.17
AUS 74.54 1.28 2.01** 93.06 =1.69 =0.65
CAN 73.94 2.07 2.21** 92.49 =1.07 =0.87
NZ 76.90 =1.84 1.41* 93.87 =2.58 =1.56
SA 76.10 =0.78 1.64* 92.32 =0.89 =0.53
S&P 500 76.82 =1.73 1.56* 92.30 =0.86 =0.22
TBL 76.94 =1.90 1.46* 92.44 =1.02 =1.51
CTBL 75.02 0.65 1.78** 89.69 1.98 1.88**
YS 77.26 =2.32 1.34* 92.93 =1.55 =0.82
DFY 78.92 =4.52 1.21 93.85 =2.57 =0.31
TMS1Y 76.76 =1.65 1.53* 92.17 =0.73 =1.02
TMS2Y 76.55 =1.38 1.49* 92.06 =0.61 =1.36
TMS5Y 76.85 =1.78 1.41* 92.85 =1.47 =0.60
VIX 76.08 =0.75 1.46* 92.02 =0.57 0.37
REA 77.44 =2.56 1.34* 92.90 =1.52 =0.89
BDI 76.21 =0.94 1.72** 92.91 =1.53 0.10
INFL 76.08 =0.76 1.71** 92.59 =1.19 =1.10
CAPUTIL 76.19 =0.90 1.65** 92.42 =0.99 =1.03
INDPRO 76.39 =1.17 1.52* 92.07 =0.61 =1.46
Average 73.63 2.49 2.22** 92.19 =0.75 =0.28

Panel B: Combination forecasts

Mean 67.95 10.00 3.29*** 91.47 0.04 0.27
Median 75.75 =0.32 1.65** 91.56 =0.06 =0.18
Trimmed mean 68.99 8.63 3.09*** 91.44 0.08 0.35
Weighted mean 65.55 13.19 3.79*** 91.47 0.04 0.28
DMSFE (θ = 0.9) 66.84 11.48 3.45*** 91.49 0.01 0.23
PC (ic = R2) 60.70 19.61 5.46*** 92.46 =1.04 0.71
Average 67.63 10.43 3.45*** 91.65 =0.16 0.28

Notes. This table reports out-of-sample results for the individual and combination forecasts of monthly average crude
oil returns based on 28 macroeconomic variables using feasible generalised least squares (FGLS) estimators of the model
parameters. RWWD is the random walk with drift benchmark forecast. MSFE is the mean squared forecast error. The
R2

OS statistic measures the proportional reduction in MSFE for the competing forecasts given in the first column relative to
the RWWD forecast. Statistical significance for the R2

OS statistic is based on the p-value for the MSFE-adjusted statistic
of Clark and West (2007). This statistic tests the null hypothesis that the RWWD forecast MSFE is less than or equal to
the MSFE of the competing forecast against the one-sided (upper tailed) alternative hypothesis that the RWWD forecast
MSFE is greater than the MSFE of the competing forecast. For comparison, we repeat the results for end-of-month returns
that are generated using the OLS estimators for the slope coefficients reported in Table 4. The variable Average is the
average of the MSFE, R2

OS , and MSFE-adjusted statistics across the predictors. The out-of-sample forecast evaluation
period is 1997:01-2016:12. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 9: Out-of-sample forecasting results using FGLS estimation: technical indicators

Monthly average returns End-of-month returns

MSFE- MSFE-
Predictor MSFE R2

OS (%) adjusted MSFE R2
OS (%) adjusted

RWWD 75.51 91.51

Panel A: Individual predictive model forecasts

MA(1, 9) 75.72 =0.28 1.85** 91.93 =0.47 =0.98
MA(1, 12) 75.66 =0.20 1.98** 91.78 =0.30 =0.24
MA(2, 9) 76.43 =1.22 1.46* 92.33 =0.90 =0.73
MA(2, 12) 77.12 =2.13 1.27 92.48 =1.07 =1.15
MOM(3) 75.00 0.68 2.22** 92.16 =0.72 =0.50
MOM(6) 76.64 =1.50 1.45* 92.37 =0.94 =0.54
MOM(9) 76.01 =0.66 1.67** 92.19 =0.74 =0.84
MOM(12) 75.62 =0.15 1.81** 91.83 =0.35 =0.71
VOL(1, 9) 74.95 0.74 1.97** 92.03 =0.58 =0.80
VOL(1, 12) 75.34 0.23 1.81** 91.95 =0.48 =1.92
VOL(2, 9) 77.46 =2.58 1.22 92.72 =1.33 =1.33
VOL(2, 12) 76.42 =1.21 1.48* 92.18 =0.74 =1.58
Average 76.03 =0.69 1.68** 92.16 =0.72 =0.94

Panel B: Combination forecasts

Mean 75.75 =0.33 1.70** 92.00 =0.54 =1.85
Median 75.69 =0.24 1.73** 92.13 =0.69 =1.63
Trimmed mean 75.77 =0.35 1.70** 92.02 =0.56 =1.71
Weighted mean 75.75 =0.31 1.71** 92.01 =0.55 =1.85
DMSFE (θ = 0.9) 75.75 =0.31 1.71** 92.13 =0.68 =2.47
PC (ic = R2) 76.19 =0.90 1.98** 93.06 =1.70 =1.45
Average 75.84 =0.44 1.75** 92.23 =0.78 =1.83

Notes. This table reports out-of-sample results for the individual and combination forecasts of monthly
average crude oil returns based on 12 technical indicator variables using feasible generalised least squares
estimators of the model parameters. RWWD is the random walk with drift benchmark forecast. MSFE is
the mean squared forecast error. The R2

OS statistic measures the proportional reduction in MSFE for the
competing forecasts given in the first column relative to the RWWD forecast. Statistical significance for
the R2

OS statistic is based on the p-value for the MSFE-adjusted statistic of Clark and West (2007). This
statistic tests the null hypothesis that the RWWD forecast MSFE is less than or equal to the MSFE of the
competing forecast against the one-sided (upper tailed) alternative hypothesis that the RWWD forecast
MSFE is greater than the MSFE of the competing forecast. For comparison, we repeat the results for
end-of-month returns that are generated using the OLS estimators for the slope coefficients reported in
Table 5. The variable Average is the average of the MSFE, R2

OS , and MSFE-adjusted statistics across
the predictors. The out-of-sample forecast evaluation period is 1997:01-2016:12. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.
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