
HAL Id: hal-03696900
https://rennes-sb.hal.science/hal-03696900

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Time- and price-based product differentiation in hybrid
distribution with stockout-based substitution
Ramzi Hammami, Erfan Asgari, Yannick Frein, Imen Nouira

To cite this version:
Ramzi Hammami, Erfan Asgari, Yannick Frein, Imen Nouira. Time- and price-based product differ-
entiation in hybrid distribution with stockout-based substitution. European Journal of Operational
Research, 2022, 300 (3), pp.884-901. �10.1016/j.ejor.2021.08.042�. �hal-03696900�

https://rennes-sb.hal.science/hal-03696900
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

 

Time- and price-based product differentiation in hybrid distribution with stockout-based substitution 

Ramzi Hammami 1*, Erfan Asgari 2, Yannick Frein 2, Imen Nouira 1 

1 Rennes School of Business, 2 rue Robert d’Arbrissel, 35065, Rennes, France. 

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, F-38000 Grenoble, France. 

hammami.ramzi@gmail.com, erfan.asgari@grenoble-inp.fr, yannick.frein@grenoble-inp.fr, imen.nouira@rennes-sb.com 

* Corresponding author 

Abstract. A delivery mix that includes delivery from stock and drop-shipping is of interest to many internet 

retailers. We consider a retailer serving a time- and price-sensitive market with two substitutable products that 

differ in the guaranteed delivery time and price, an express product (delivered from the stock) and a regular 

product (drop-shipped). In case of stockout, customers may switch from the express product to the regular 

product. We study how to differentiate the products in terms of delivery times and prices and how to 

determine the stock level to maximize the retailer’s expected profit while satisfying service constraints. We 

solve different variants of the problem and derive insights into the optimal retailer’s strategy. In addition, we 

study the impact of stockout-based substitution. This paper is the first to investigate time- and price-based 

differentiation along with inventory decisions for a retailer who relies on a hybrid distribution to satisfy a 

time- and price-sensitive demand subject to stockout-based substitution. When prices and stock are fixed, in 

addition to minimum and maximum time differentiations, a medium differentiation strategy may be optimal 

but depends on the stock level. When only prices are fixed, there exists a price differentiation limit below 

which a minimum time differentiation is optimal, and above which only the express product should be 

offered. For the general model, numerical experiments show that a higher stockout-based substitution leads to 

greater time differentiation (which is consistent with the results of previous models) and more stock. 

However, this would not impact the price differentiation.  

Keywords: Supply chain management; Time- and price-based differentiation; Delivery time quotation; Dual-

channel retailing; Stockout-based substitution. 

 

1. Introduction 

Many retailers rely on a delivery mix that includes the traditional delivery from stock (DFS) and the drop-

shipping to satisfy demand. With drop-shipping, a retailer simply forwards customer orders to manufacturers 

or wholesalers who fulfill those orders directly for a predetermined price to be paid by the retailer (Khouja 

and Stylianou 2009). Drop-shipping has some advantages for the retailer, including savings in holding cost, 

but drop-shipping typically incurs a longer delivery time (DT), which may deter time-sensitive customers 

(Khouja 2001, Khouja and Stylianou 2009, Rabinovich et al. 2008). DFS implies a shorter and more reliable 

DT, but incurs a holding cost that may increase with uncertainty. A mix of DFS and drop-shipping has proven 

to be an efficient distribution strategy, particularly when there is a high uncertainty in demand and/or 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221721007347
Manuscript_25ad97089e9b8e149b6b6112c031f96a

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221721007347
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221721007347


2 

 

replenishment lead time. In such cases, the drop-shipping provides the retailers with the option to reserve the 

stock internally for high-priority orders while fulfilling regular orders through drop-shipping (Ayanso et al. 

2006).  

With a mix of DFS and drop-shipping, a product is offered with two varieties that have different DTs and 

can generate different margins (Ayanso et al. 2006). Rabinovich et al. (2008) studied the handbag and luggage 

segment of online retailing (e-Bags.com) and proved empirically that an internet retailer can obtain higher 

margins when it is willing and able to promise a shorter DT. Over the last Christmas holidays, Cdiscount.com 

(a French leading online retailer), offered customers two options to buy some products. In the first option, the 

product is immediately delivered from Cdiscount store in France. In the second option, the product is 

delivered directly from the supplier in China. This second option is less expensive for the customer but leads 

to a much longer and less reliable DT. Two real examples are presented below. 

 

  

Option 1.  

Delivery from Cdiscount store 

Delivery: 21-22 November 

Price: €179.99         

Delivery: 14-15 November  

Price: €10.13  

Option 2.  

Delivery from Chinese supplier 

Delivery: 05-19 December 

Price: €169.99  

Delivery: 13-17 December  

Price: €7.99  

                                                                      
 

Figure 1. Real examples of products delivered with a mix of DFS and drop-shipping on Cdiscount.com 

 

The case where the retailer controls this hybrid distribution mode and decides how to differentiate the 

products with respect to DT and price is relevant to powerful distributors and retailers (Li et al. 2019, Tian et 

al. 2018, Hagiu and Wright 2015). Practical illustrations are given in the following examples. Heydari et al. 

(2019) provided the example of Digikala, the most famous and successful online retailer in Iran 

(www.Digikala.com). Digikala owns both DFS and drop-shipping channels. As a result, Digikala offers 

substitutable products through a dual-channel structure and decides the characteristics of both channels. In the 

healthcare sector, a global leader in clinical diagnostics and industrial microbiology distributes in vitro 

diagnostic medical devices while offering two possibilities to customers. The first (premium) alternative is the 

delivery from stock (an advanced stock is located close to demand zone). The second (standard) alternative 

consists in forwarding the order to the manufacturing site; the product is then received at the distribution 

center and delivered to the customer with a longer DT and a lower price. There are also many examples that 

can be found on Amazon.com. Amazon offers substitutable goods that can be either drop-shipped from 

upstream suppliers or shipped directly from Amazon fulfillment centers (Ayanso et al. 2006, Rabinovich et al. 
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2008). For instance, an electrical grill may be delivered from Amazon store or drop-shipped from the supplier 

“Truthful Life” (www.Amazon.com). Truthful Life offers a saving of $9.99 but the DT is 11 days longer. So, 

consumers who are willing to wait 11 days save the $9.99. Giant retailers like Amazon have the power to 

determine which suppliers to include on their platform and impose the use of adequate logistics service which 

enable to guarantee a desired DT to customers. The above examples (a same company that manages both 

production and distribution or a giant retailer that can impose his conditions to the suppliers) correspond to 

cases where the retailer (distributor) acts as a centralized decision-maker and decides how to differentiate 

express and regular products. 

Following the above practical examples, we consider the case of a retailer who relies on a hybrid 

distribution mode with a mix of DFS and drop-shipping to sell two substitutable products (regular and 

express), where the regular product refers to the drop-shipped product, and the express product refers to the 

product delivered from stock. In compliance with the above examples, the express product has a shorter DT 

but a higher price than the regular product. Figure 2 illustrates the studied supply chain (SC). 

 

Figure 2. Illustration of the studied hybrid system with a mix of DFS and drop-shipping 

The DT of the drop-shipped product and the price of the express product cannot be chosen without 

considering the other product because of the potential cannibalization between the two products. Therefore, it 

is critical for the retailer to strategically differentiate the two products to achieve the maximum profit. This 

study investigates the DT, price, and inventory decisions faced by a retailer that uses a mix of DFS and drop-

shipping to serve a time- and price-sensitive market with two substitutable products. The products differ in 

terms of the guaranteed DT and price. The customers observe the pair of DT and price quoted by the retailer 

for each product and make their purchase decisions. In case of stockout, some customers initially interested in 

the express product may switch to the regular product, whereas others may leave the system (lost sales). Many 

authors have provided practical examples to illustrate how customers can be served with drop-shipping in case 

of stockout (e.g., Khouja and Stylianou 2009, Ayanso et al. 2006). Stockout-based substitution (S-b-S) 

impacts the demand of both express and regular products. Therefore, it is important to consider the S-b-S and 
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study its effect on DT, price, and inventory decisions. We examine this problem when the demand process is 

stochastic, inventory replenishment lead time is stochastic, and drop-shipping lead time is also stochastic. The 

retailer, acting as a centralized decision-maker, decides how to differentiate the products (with respect to DT 

and price) and determines the stock level while satisfying the service level constraint for each product. The 

products are substitutable, so the demand for each product decreases in its price and quoted DT and increases 

in the price and quoted DT for the competing product. In addition, as we consider the S-b-S, the effective 

demand of each product depends also on the stockout probability, which leads to a non-linear demand 

function that is sensitive to DT, price, and stock level.  

There are several trade-offs in the model. The express product can be sold with a higher margin but 

requires holding inventory, which implies an additional cost. If the express product is profitable, it may be 

interesting to hold more stock than the minimum level imposed by the service constraint as this reduces the 

stockout probability and allows to serve more express customers. To increase the demand for the express 

product, the retailer can quote a longer DT for the regular product. However, an increase in the express 

demand may require holding more inventory to satisfy the service level constraint. The S-b-S is expected to 

have a significant impact on such trade-offs. Additionally, with the presence of S-b-S, it may be interesting to 

hold less stock (to reduce the inventory cost) although this implies some loss of express demand, since this 

loss will be partially transformed into additional demand for the regular product. However, this may lead to a 

longer waiting time in the drop-shipping channel and, consequently, a higher risk of violating the service level 

constraint. 

To provide insights into these trade-offs, we study different variants of the problem: (i) The retailer decides 

the DT differentiation where the stock and prices are fixed. (ii) The retailer decides the stock level and the DT 

differentiation where the prices are fixed. (iii) The retailer decides the DT and price differentiations as well as 

the stock level (general model). In the first setting, we determine the closed-form expression of the optimal 

solution. We show analytically that it is not always optimal to adopt an extreme time differentiation strategy 

and that an intermediate strategy can be more valuable but should be adjusted in function of the stock level. In 

the second setting, we determine the optimal solution when S-b-S is ignored and provide a near-optimal 

solution in the presence of S-b-S. In the case without S-b-S, analytical results show that there exists a 

threshold price below which it is optimal to offer both products with the smallest possible time differentiation 

(i.e., offering the regular product with the shortest feasible DT) and above which only the express product 

should be offered. Considering the S-b-S, the profit function profile changes. We show numerically that 

quoting the DT without considering the effect of S-b-S leads to a considerable loss. Finally, using the 

analytical results obtained in the first two settings, we transform the general model into a quasi-equivalent 

single-variable model. Based on extensive numerical experiments, we show that a higher rate of S-b-S should 

normally lead to greater time differentiation and more stock. However, this would not impact the price 

differentiation.  
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There are valuable studies on time-based differentiation for make-to-order (MTO) manufacturers (e.g., 

Pekgün et al. 2017, Zhao et al. 2012, Boyaci and Ray 2003, 2006), and for dual-channel SCs where the 

manufacturer manages the direct channel (e.g., Hua et al. 2010, Modak and Kelle 2019). There are also 

interesting studies on how retailers control the inventory with drop-shipping option (e.g., Ayanso et al. 2006, 

Khouja and Stylianou 2009, Ma and Jemai 2019). However, the problem studied in this paper has not been 

explored in the extant literature. We contribute by solving a new problem and providing new results. For 

instance, while Boyaci and Ray (2003, 2006) and Hua at al. (2010) showed that the market characteristics 

govern optimal product positioning and time differentiation strategies, we generalize this result and show that 

the S-b-S also plays an important role, particularly in low competitive environments that are typically 

characterized by high S-b-S rates. Our analysis sheds light on an important new finding as we show in all 

settings that a higher S-b-S must lead retailers to increasing the time differentiation. Ignoring S-b-S leads to 

undertaking sub-optimal decisions. Our work explains how the retailer’s stock level impacts the time 

differentiation strategy. This analysis cannot be obtained from studies that focus on MTO manufacturing 

systems (e.g., Boyaci and Ray 2003, 2006, Zhao et al. 2012, Pekgün et al. 2017) or from studies on inventory 

models with drop-shipping but without DT differentiation decisions (e.g., Ayanso et al. 2006, Khouja and 

Stylianou 2009, Ma and Jemai 2019). Indeed, while an extreme time differentiation strategy is proved to be 

optimal in most related works, we find that when the stock level is greater than a given threshold value, a 

medium time differentiation strategy can be optimal. We also show that the higher the price differentiation is, 

the higher the time differentiation becomes, which confirms the findings of Modak and Kelle (2019) and 

Boyaci and Ray (2003, 2006). Then, we complement these results by showing that a higher price 

differentiation leads the retailer to holding more stock. 

Section 2 gives an overview of the literature. In Section 3, we develop the general framework. In Sections 

4, 5 and 6, we solve different variants of the model and derive analytical and numerical insights. Finally, in 

Section 7, we conclude and discuss the practical implications of our findings. 

2. Related literature 

The studies that come closest to our work are those considering a SC that offers two substitutable products 

differentiated in terms of DT and price. We discuss these studies and show how we contribute to the extant 

literature with respect to both modeling framework and managerial findings. Our work also relates to the 

inventory control literature under drop-shipping and, more generally, to the joint lead time quotation and 

pricing problem in time- and price-sensitive markets. We review relevant papers in these areas. A 

classification table that compares the different studies is provided at the end of this section. 

2.1. Substitutable products differentiated in terms of DT and price 

Most relevant works focus on the problem of an MTO manufacturer. Boyaci and Ray (2003) considered a 

firm selling two substitutable products to satisfy a linear price- and DT-sensitive demand. Demand is served 
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from two separate facilities, and each facility is modeled as an M/M/1 queue. In its general form, the problem 

is choosing the price of each product and the DT of the express product. They showed that considering 

capacity costs leads to increasing the time differentiation. Boyaci and Ray (2006) extended the previous work 

by considering the delivery reliability (i.e., minimum service level) as a decision variable. They found that the 

firm would offer the express product with a lower service level than the regular product when the market is 

balanced between time-sensitive customers and price-sensitive customers. Zhao et al. (2012) compared the 

uniform quotation mode, when a firm offers a single DT and price, to the differentiated quotation mode, when 

a firm offers a menu of DT and prices. They indicated that when DT-sensitive customers value a product no 

more than price-sensitive customers, a firm should use the uniform quotation mode. Our research differs from 

these studies in three key aspects. First, we consider the case where the product differentiation results from a 

mix of DFS and drop-shipping, whereas the above studies differentiate products by allocating a different 

production capacity to each one of them. Second, unlike the above studies, we incorporate inventory decisions 

which is relevant to the retailing context. Third, in our work, the switchovers are governed not only by price 

and DT disparities but also by the stockout. 

There are also interesting studies on DT quotation and pricing in dual-channel SCs with one manufacturer 

and one retailer such as Hua et al. (2010) and Modak and Kelle (2019), or with two competing firms such as 

Pekgün et al. (2017). These studies, however, focused on a decentralized setting whereas we consider a 

centralized setting where all decisions are undertaken by a single retailer. In addition, the consideration of 

product differentiation and inventory decisions distinguish our work from the above studies. 

With respect to the main findings, our work contributes to the research stream presented above by 

providing new results that allow to understand the interplay of inventory, DT quotation, pricing, and S-b-S. 

We examine how the retailer’s inventory level impacts the DT-based differentiation and how the S-b-S 

impacts the price, DT and inventory level. For instance, we show that the retailers must account for the effect 

of S-b-S to avoid sub-optimal decisions. The existence of S-b-S leads the retailer to considering medium 

levels of time differentiation as a potential optimal strategy, whereas minimum or maximum time 

differentiations are often optimal in the existing models. We also find that a higher S-b-S leads to a greater 

time differentiation and more stock. However, this would not impact the price differentiation. 

2.2. Inventory models with drop-shipping 

Khouja (2001) first incorporated drop-shipping as an additional option into the news-vendor problem and 

found that drop-shipping significantly improves the expected profit. Ayanso et al. (2006) considered an online 

retailer facing two customer classes with respectively short DT needs satisfied via air-shipment and regular 

needs satisfied via ground-shipment. The authors identified the stock level below which low-priority orders 

are to be drop-shipped and in-house stock is to be exclusively reserved for high-priority orders. Khouja and 

Stylianou (2009) revisited the (Q, R) inventory model by using the drop-shipping option in case of a shortage. 

They showed that drop-shipping is more valuable when the replenishment lead time is long and the ordering 
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cost relative to the holding cost is small. Ma and Jemai (2019) used the news-vendor model to study the 

problem of a retailer who faces two types of demand: store demand and internet demand. Drop-shipping is 

used to fulfill internet demand if the available stock is not sufficient. The authors investigated the stock 

rationing level below which the retailer starts using drop-shipping. The above papers focused mainly on the 

impact of drop-shipping on inventory decisions. They proved the interest of offering the dual-channel option 

in addition to the traditional retail channel. Our study builds on this finding and investigates how to 

differentiate the product offered by each channel and how to adjust the stock level accordingly. Note that 

these works assumed exogenous demand, DT, and price and, thus, did not investigate the questions related to 

the product differentiation and S-b-S. Our work generalizes the above studies by showing that it can be 

optimal to offer two differentiated products where drop-shipping is used to satisfy the demand of the regular 

product, or to use drop-shipping only as a backup solution to serve the switching customers in case of 

stockout. In this latter case, the whole system can be viewed as a traditional shipping system with a 

combination of lost sales (customers who leave in case of stockout) and back-orders (customers who switch to 

drop-shipping in case of stockout). 

2.3. Joint lead time quotation and pricing 

In a pioneer paper, Palaka et al. (1998) studied the DT quotation, pricing, and capacity utilization for an 

MTO firm modeled as an M/M/1 queue and facing a linear price- and DT-sensitive demand. Using this 

framework, Pekgün et al. (2008) studied the decentralization of pricing and DT decisions where the 

production department quotes a DT and the marketing department quotes a price. Liu et al. (2007) studied a 

decentralized SC where the supplier, acting as a leader, decides the quoted DT and the wholesale price. The 

retailer, acting as a follower, decides the final price. Albana et al. (2018) extended the previous works by 

assuming that the production cost is not fixed but decreases in the quoted DT. Hammami et al. (2020a) 

proposed a new framework as they considered a two-stage SC with a DT decision associated with each stage 

and a final demand that depends on the overall DT quoted by the SC and the final price. This study is first to 

consider a tandem queue M/M/1-M/M/1 in the analysis of the DT quotation and pricing problem. Hammami 

et al. (2020b) investigated the policy of rejecting customers when the number of waiting orders is larger than a 

fixed threshold K. The authors showed that their proposed policy can be more profitable than the all-orders 

acceptance policy, and then studied the impact of K. 

These studies examined the DT quotation and pricing for a single final product. Their findings cannot be 

generalized to investigate the case of substitutable products where it may be interesting to quote a longer DT 

or a higher price for a given product in order to favor the demand of the other product as we show in this 

paper. In addition, the above studies did not account for the inventory decisions and their impact on the DT 

quotation and pricing.  

  

Table 1. Classification of the literature 
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Literature Decisions Demand Decision-making Main problem 

investigated 

Modeling framework Stockout 

Boyaci & Ray 

(2003) 

p, l Linear f (p, l) 

Substitution  

(2 varieties)  

Centralized (MTO 

manufacturer) 

Price-and time-based 

differentiation 

Stochastic dual channel 

with (two M/M/1 queues 

in parallel) 

No 

inventory 

Boyaci & Ray 

(2006) 

p, l, r Linear f (p, l, r) 

Substitution  

(2 varieties) 

Centralized (MTO 

manufacturer) 

price-, time- and reliability-

based differentiation 

Stochastic dual channel 

(two M/M/1 queues in 

parallel) 

No 

inventory 

Ayanso et al. 

(2006) 

S Exogenous  

(2 customer 

classes) 

Centralized (retailer) Allocating inventory 

(rationing) to high- and 

low-priority orders 

(Q, R) inventory model 

with drop-shipping 

Drop-

shipping 

Liu et al. 

(2007) 

p, l Linear f (p, l) 

(1 product 

variety) 

Decentralized 

(manufacturer as a leader 

and retailer as a follower) 

and Centralized 

Optimizing and 

coordinating manufacturer-

retailer operations 

Stochastic single channel 

(M/M/1 queue as 

illustration)   

Penalty cost 

for delays 

Pekgün et al. 

(2008) 

p, l Linear f (p, l) 

(1 product 

variety) 

Decentralized (marketing 

and production 

departments) and 

Centralized 

Lead time quotation and 

pricing to coordinate 

marketing and production 

departments  

Stochastic single channel 

(M/M/1 queue) 

No 

inventory 

Khouja & 

Stylianou 

(2009) 

S Exogenous Centralized (retailer) Optimizing inventory 

policy with drop-shipping 

in case of shortage 

(Q, R) inventory model 

with drop-shipping 

Backorder 

or lost stale 

Hua et al. 

(2010) 

p, l Linear f (p, l) 

Substitution (2 

varieties) 

Centralized and 

Decentralized 

(manufacturer as a leader 

and retailer as a follower)  

Optimizing and 

coordinating manufacturer-

retailer operations 

Deterministic dual (retail 

and direct) channel   

No 

inventory 

Zhao et al. 

(2012) 

p, l Linear f (p, l) 

Substitution 

(2 varieties) 

Centralized (service 

provider or MTO 

manufacturer) 

Uniform DT quotation 

mode vs. differentiated 

quotation mode 

Stochastic single or dual 

channels (one or two 

M/M/1 queues in 

parallel) 

No 

inventory 

Pekgün et al. 

(2017) 

p, l Linear f (p, l) 

Substitution 

(2 Products) 

Two competing companies 

(MTO manufacturers) 

Competition on Lead time 

quotation and pricing  

Stochastic with Two 

independent single 

channels (M/M/1 queues) 

No 

inventory 

Albana et al. 

(2018) 

p, l Linear f (p, l) 

(1 product 

variety) 

Centralized (MTO 

manufacturer) 

Lead time quotation under 

lead time-dependent cost 

Stochastic single channel 

(M/M/1 queue)  

No 

inventory 

Modak & 

Kelle (2019)  

p, l, S Linear f (p, l) 

Substitution 

(2 varieties) 

Centralized and 

Decentralized 

(manufacturer and retailer) 

Optimizing and 

coordinating manufacturer-

retailer operations 

Dual online and 

traditional retail channels 

with random demand 

Lost sales 

Ma & Jemai 

(2019) 

S   Exogenous Centralized (retailer) Inventory rationing to 

satisfy store and online 

demand 

News-vendor model with 

drop-shipping as an 

additional fulfillment 

option 

Penalty cost 

Hammami et 

al. (2020a) 

p, l Linear f (p, l) 

(1 product 

variety) 

Centralized (MTO SC) Lead time quotation and 

pricing in two-stage SC 

Stochastic with two-stage 

SC (tandem queue 

M/M/1-M/M/1) 

No 

inventory  

Hammami et 

al. (2020b) 

p, l Linear f (p, l) 

(1 product 

Centralized (MTO 

manufacturer) 

Price and lead time 

quotation with customer 

Stochastic single channel 

(M/M/1/K queue) 

No 

inventory 
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variety) rejection  

Our study p, l, S Non-linear   f (p, 

l, S) 

Substitution 

(2 varieties) 

Centralized (retailer) Time-and price-based 

product differentiation and 

effect of stockout-based 

substitution 

Stochastic dual channel 

with mix of DFS and 

drop-shipping (DFS + 

M/M/1) 

Substitution 

+ Lost sale 

 

p=price, l = lead time, S= order size (inventory policy decisions), r= service level, DFS= delivery from stock, f(.) = function of. 

3. Modeling framework 

We consider a profit-maximizing retailer who uses a hybrid distribution with a mix of DFS and drop-

shipping and, thus, offers two substitutable products differentiated in terms of DT and price to satisfy a 

random time- and price-sensitive demand. With drop-shipping, the retailer forwards the customer order to the 

supplier (wholesaler or manufacturer). The order is then processed by the supplier and delivered to the 

customer directly. In this case, the product is sold as a regular product. With traditional DFS, the product is 

immediately delivered to the customer from the retailer’s stock (if the stock is available) and is sold as an 

express product. This SC structure has been illustrated in Figure 2. 

Our initial demand model (i.e., without incorporating S-b-S) is linear with substitution. Customers arrive 

according to a Poisson process with arrival rates �� and �� for regular and express products, respectively. One 

unit of demand corresponds to one customer (order). The mean demand of each product is decreasing in its 

DT and price and increasing in the other product’s DT and price. The regular product is offered at a standard 

price �� and a guaranteed DT ��. The express product is offered at a higher price �� and a shorter DT ��. The 

demand rates are given in equations (1) and (2). Note that the total potential market size is 2�. Parameters �� 

and 	
 are price-sensitivity and time-sensitivity, respectively, and �� and 	� represent the sensitivity of 

switchover toward price difference and DT difference, respectively. 

 �� = � − ���� + ����� − ��� − 	
�� + 	���� − ���                                        (1) �� = � − ���� + ����� − ��� − 	
�� + 	���� − ���                                        (2) 

Thus, if DT �� increases by one unit, (	�+	
) units of demand will be lost from the drop-shipping channel, 

of which 	� units will transfer to the DFS channel, and 	
 units will be lost from the two channels. Note that 

the total initial demand, given by �� + �� = 2� − ����� + ��� − 	
��� + ���, decreases in price charged and 

DT quoted. For the regular product, the supplier processes each single order forwarded by the retailer and 

ships it directly to the customer. The drop-shipping channel is then modeled as an MTO M/M/1 queue where 

the service time is exponentially distributed with rate ��. The M/M/1 queue has been widely used in DT 

quotation literature. The retailer targets a minimum service level �� for the regular product. The probability 

that a customer is served within the quoted DT �� must be greater than �� (i.e., Pr�� ≤ ��� ≥ ��, where � is 

the expected waiting time for a customer). This prevents an unreliable DT quote. As the express product is 

immediately delivered from stock, our entire analysis, without loss of generality, considers that �� is 

normalized to be equal to zero. Thus, the DT of regular product also represents the DT difference between 
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express and regular products. DT �� is a decision variable, which is of course affected by the drop-shipper 

service time (capacity). The retailer controls �� with pricing and inventory decisions as these decisions impact 

the demand in the drop-shipping channel. 

Each replenishment of retailer’s inventory refills the stock to its target level �. The service time to refill the 

stock is exponentially distributed with service rate ��. The service time does not depend on the replenishment 

lot size since the products are assumed to be always available at the supplier’s site, which is a common 

assumption (Zhu 2015). Thus, the replenishment time corresponds to preparation and transportation activities. 

We let �� denote the probability of stockout in the retailer’s warehouse. The probability of serving customers 

(i.e., 1- ��) must be greater than a predetermined minimum service level ��. In case of stockout, the customer 

can either switch to the regular product (i.e., accepts a longer DT �� but with a lower price ��) or leave the 

system (lost sale). We let � ∈ �0,1" denote the S-b-S rate; it represents the percentage of customers initially 

interested in the express product but accepting to switch to the regular product in case of stockout. In 

particular, � = 1 means that all customers switch to the regular product, whereas � = 0 means that all 

customers leave the system. Note that a smaller � can represent a more competitive market; the S-b-S 

typically increases when the retailer is the exclusive seller of the product and decreases if the product can be 

found elsewhere by customers. 

We let ��### and ��###  denote the effective demand rate of regular and express products, respectively. ��### is the 

sum of customers initially interested in the regular product (i.e., ��) and customers interested in the express 

product but deciding to switch to the regular product in case of stockout (i.e., �����). ��### is the difference 

between the customers initially interested in the express product (i.e., ��) and the customers that are likely to 

find empty stock (i.e., ����). This system is illustrated in Figure 3. 

 

 

Figure 3. A hybrid delivery system with stockout-based substitution  
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To obtain a tractable model while capturing the essential features and key trade-offs, we make two 

approximations that we will discuss. The first approximation concerns the service constraint for the regular 

product. When the S-b-S is considered (i.e., for � > 0�, the effective demand for the regular product is no 

longer exponentially distributed. In this case, we conducted extensive experiments to check whether it is still 

acceptable to use the service constraint formula of the M/M/1 queue (which assumes that demand is 

exponentially distributed). Thus, we simulated our hybrid system (shown in Figure 3) with ARENA software 

(version 14.0) while considering the following parameters: �=0.7, �1=35, �2=40, �1=40, �2=20, and S=50. We 

ran the system for the equivalent of 500,000 hours. The simulation's result revealed that the probability of 

serving customers on time is equal to 0.25495. Then, we assumed that the effective demand ��### follows the 

exponential distribution and found that the probability of serving customers on time is equal to 0.25727. The 

gap between the probability obtained with simulation of the real system and the probability obtained with the 

exponential assumption is equal to 0.9% (less than 1%). To guarantee the robustness of this result, we 

repeated the same procedure 100 times while considering different values of parameters that were randomly 

generated as follows: �∈[0.4, 1], �1∈[30, 40],  �2∈[35, 45], �1∈[35, 45], �2∈[15, 25], and S∈[45, 55]. In all 

cases, we obtained the same result (i.e., the gap is smaller than 1%). Therefore, we conclude that the service 

constraint formula of the M/M/1 queue provides an acceptable approximation. Note that this constraint is 

exact for � = 0. 

For the stockout probability, the general formula is very complex and leads to a non-tractable model. We 

therefore consider the stockout probability �� that we obtain if the reorder point (ROP) equals 0 (i.e., the 

buffer is refilled to stock level S when it is empty). For ROP=0, we obtain ψ� = '1 + ()*+) ,-�
 (see the proof in 

the appendix). Hence, in case of ROP=0, we study the system with the exact stockout probability. In case of 

ROP > 0, �� represents an upper bound of the exact stockout probability. The lower the ROP, the more 

precise this upper bound is. We explain at the end of this section that the considered stockout probability �� 

can be effectively used to study the case of ROP>0.  

Thus, the effective demand rates are given by the following equations, where �� = �� + �� and 	� = 	
 +	� (�� is normalized to be equal to zero without loss of generality).  

  ��### = �� + ����� = �� + � �.)�).) /0)1 = � − ���� + ���� − 	��� + � �2-34�)/3)�4/5)
4�)2-34�)/3)�4/5)
4 /0)1                  (3) 

  ��### = �1 − �����  = 0)1 .).) /0)1  =  0)1 �2-34�)/3)�4/5)
4�2-34�)/3)�4/5)
4 /0)1                                                                            (4) 

In the traditional shipping mode, the retailer purchases the product from the supplier for a wholesale price 

and then determines the retail price for consumers. We let 6� denote the purchasing cost per unit of product 

(shipping cost included), which incurs the retailer’s unit margin 7� = �� − 6� (this does not account for the 

inventory holding cost). In contrast, in the drop-shipping mode, the supplier determines  the retail price and 

shares the revenue with the retailer. Consequently, the retailer loses the flexibility of setting market prices 
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(Khouja and Stylianou 2009, Tian et al. 2018). Hence, we consider that the regular product has a given fixed 

price and generates a fixed unit margin 7� = �� − 6� for the retailer.  

In its general form, the problem is determining the DT differentiation (by quoting DT ��), the price 

differentiation (by setting price ��), and the stock level (by choosing �), with the objective of maximizing the 

total expected profit under service level constraints for both regular and express products. The general model 

is given below. 

General model (8
4,1,�)) Max < ���, �, ��� = ��� − 6����### + ��� − 6����### − =�   (5) 

�>?@A6B BC   

1 − A-D04-.4#### E
4 ≥ �� (6) 

����� + ��� ≥ �� 
(7) 

�� > 0, � ≥ 0, �� > ��, ��  ≥ 0, ��  ≥ 0, ��### F ��.  

Objective function (5) represents the total expected profit to be maximized (i.e., net revenue – inventory 

cost). Note that ��### and ��### are given by equations (3) and (4), respectively. The exact formula of the expected 

stock level is ∑ iψJ*JK� = */�� ��/ L)M)N (where ψJ represents the probability of having i items in stock when a 

customer arrives). However, this formula is not tractable since the model is already too complex. We make the 

following assumption that is widely used in theory and practice. 

We consider that 
+)()* is small (i.e., 

+)()* ≪ 1�. Note that 
+)()* = 

� ()P* +)P . Hence, the mean inventory 

replenishment time (i.e.,1 μ�P ) is relatively small with comparison to the mean time required to consume the 

stock (i.e., S λ�P ). This condition is guaranteed by the service constraint for the express product. The case of a 

small 
+)()* is widely adopted in the literature (see e.g., Rajagopalan 2002, Rafiei and Rabbani 2012) and 

reflects many practical situations such as when the retailer relies on a local supplier. A small value of 
+)()*  is 

consistent with the consideration of a low reorder point since the replenishment of the stock is relatively fast. 

When 
+)()* is small, it is easy to show that the expected stock level is approximately equal to 

*�.  

The unit inventory cost is denoted by 2h. Hence, the expected inventory cost is given by hS. Constraint (6) 

expresses the service level constraint for the regular product, i.e., Pr�� ≤ ��� ≥ ��. We recall that � is the 

waiting time for a customer. Using the M/M/1 queue properties (as discussed earlier), we obtain Pr�� ≤
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��� = 1 − A-D04-.4#### E
4 (see Hammami et al. 2020a). The service level constraint for the express product, i.e., 1 − �� ≥ ��, is given by constraint (7). We recall that 1 − �� = 0)1.)/0)1. The other constraints specify the 

variable domains. Note that the stability condition of the M/M/1 queue (i.e., ��### F ��) is automatically 

satisfied when constraint (6) is satisfied. Therefore, we can ignore the stability condition. 

Finally, we recall that the stockout probability �� used in the model is exact for ROP = 0. In case of ROP>0, �� is an upper bound of the exact stockout probability. Using this upper bound instead of the exact stockout 

probability does not change the main trade-offs of the model. It is also possible to minimize the impact of this 

approximation on the model’s outcomes through an adequate adjustment of the values of some parameters. 

For instance, since �� is here an upper bound, we can run our model with a faster mean inventory 

replenishment lead time (i.e., a smaller 
�()) to reduce the risk of stockout. In addition, in case of � = 0 (no S-

b-S), we can decrease the minimum service level �� for the express product. In case of � > 0, we can also 

decrease the value of � to reduce the number of switching customers in case of stockout. Furthermore, it is 

important to note that we can still use 
*� to model the expected stock level even when ROP>0. We validate this 

result by simulation while considering different values of ��, �� and � as well as different values of ROP. 

More details about the simulation and its results are given in the appendix. 

For convenience, we let � denote the DT of the regular product (instead of ��) and � denote the price of the 

express product (instead of ��� in the rest of the manuscript. In the following sections, we solve and analyze 

different variants of this model. In Section 4, we study the case where � is a decision variable while � and � 

are fixed. In Section 5, we study the case where � and � are decision variables while � is fixed. The general 

case, in which �, �, and � are decision variables, is studied in Section 6.  

4. Delivery time quotation model with fixed stock and price 

In this section, we determine the optimal DT � when � and p are fixed. To simplify the notation, we let �� = T�,� − 	�� and �� = T�,� + 	��, where T�,� = � − ���� + ��� and T�,� = � + ���� − ���. In addition, 

we let U = �V � ��-W4�. The resulting model, denoted by (8
), is given below. Note that constraint (10) imposes 

lower and upper bounds on � to guarantee positive values for �� and �� (also note that 
-X),Y 5)  is not necessarily 

negative). 

�8
� Max  <��� = 7� ZT�,� − 	�� + � DX),Y/5)
 E)
X),Y/5)
/0)1[ + \)0)1 X),Y/5)
/0)1 DT�,� + 	��E − =�  

�. B.    �� − T�,� + 	�� − � DX),Y/5)
 E)
X),Y/5)
/0)1 − ]
 ≥ 0                                                                (8)  

0)1X),Y/5)
/0)1 ≥ ��   (9) 
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 max �0, -X),Y 5) � F � ≤ X4,Y 54                                                                                                     (10) 

As highlighted by many authors (e.g., Ayanso et al. 2006, Rabinovich et al. 2008), the express product 

generates a higher margin than the regular product. Hence, we focus here on the case of 7� ≥ 7�. Since � ≤1, we also have 7� ≥ �7�. We first solve model �8
� and then discuss the insights. 

 

4. 1. Model solving 

Constraint (8) is equivalent to _̀ ��� ≥ 0 where _̀ ��� = 	��	� − �	���a + '	�DT�,� + ��� E −
	�DT�,� − �� + 2�T�,�E, �� −  'DT�,� − ��EDT�,� + ��� E + 	�U + �T�,��, � − UDT�,� + ��� E. To solve 

model �8
�, we first provide a simpler formulation of constraint (8). All proofs are given in the appendix.  

Lemma 1. For � = 0, the service constraint for the regular product (i.e., constraint (8)) is equivalent to      � ≥
��, where �� = X4,Y-04/bDX4,Y-04E)/c54]�54 . 

For � > 0, constraint (8) is equivalent to � ≥ �`, where �` is the unique root in d��, X4,Y 54 e of the cubic equation: 

_̀ ��� = 0. 

Lemma 1 provides a new lower bound on �. Furthermore, constraint (9) is equivalent to � ≤��-W)�0)1-W)X),YW)5) . Hence, we deduce that the feasible domain for model �8
� is ��\fg, �\Xh" , where �\fg =
max {�`, -X),Y 5) } and �\Xh = min {X4,Y 54 , ��-W)�0)1-W)X),YW)5) }. The optimal solution of model �8
� is given below. 

Lemma 2. The optimal DT of the regular product is: 

�∗ = m  �no, p_ �\fg ≤ �no ≤ �\Xh �\fg,                     p_�no F �\fg �\Xh,                     p_�no > �\Xh  

where �no = -X),Y/0)1 Zbq)�r)str4�r4�q4stq)�-�[
5) , �\fg = max {�`, -X),Y 5) } and �\Xh = min {X4,Y 54 , ��-W)�0)1-W)X),YW)5) }. For 

� = 0 (i.e., in the case without S-b-S), �` = �� = X4,Y-04/bDX4,Y-04E)/c54]�54 .  

For � > 0, �` is the unique solution in d��, X4,Y 54 e of the cubic equation _̀ ��� = 0 (see Lemma 1). 

4.2. Model analysis and insights 

Cases �∗ = -X),Y 5)  and �∗ = X4,Y 54  correspond to situations where only one product is offered to the customers 

(the demand of the other product equals zero). Since we focus here on product differentiation, we exclude 
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these extreme cases from the analysis. Based on Lemma 2, we deduce a set of managerial implications in the 

following propositions. In Proposition 1, we analyze the time differentiation strategy.  

Proposition 1. If 
\)\4  ≤ 545), then the retailer should adopt a minimum time differentiation strategy (i.e., 

offering the regular product with the shortest feasible DT). 

If 
545) F \)\4  ≤ �W)) '545) − ��1 − ����,, then the optimal strategy depends on stock level �. The retailer should 

adopt a minimum time differentiation when � is smaller than a given threshold value, and a medium time 

differentiation (i.e., intermediate differentiation level between the minimum and the maximum) when � is 

larger than this threshold value. 

If 
\)\4 > �W)) '545) − ��1 − ����,, then the optimal strategy is a maximum time differentiation (i.e., offering the 

regular product with the longest feasible DT). 

The managerial guidelines provided in Proposition 1 are graphically illustrated in Figure 4.  

 

Figure 4. Time differentiation strategy when the characteristics of the express product are fixed 
 

Note that 
\)\4 represents the price differentiation between the express product and the regular product. 

Furthermore, 
545) represents the ratio of customers lost from the drop-shipping channel to customers 

transferring to the DFS channel due to a unitary increase in the DT of the regular product. When 
\)\4  ≤ 545), 

quoting a longer DT results in loss of revenue caused by a decrease in the regular demand that is greater than 

the additional revenue generated from the increase in the express demand. In this case, the retailer should 

quote the shortest feasible DT, which is given by �∗ = �\fg = �`.  

Then, when 
545) F \)\4  ≤ �W)) '545) − ��1 − ����,, the trade-off between the regular demand and the express 

demand is affected by the stock level. Compared to the first case, the express product becomes more 
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profitable. However, when � is relatively small, it is not in the retailer’s interest to favor the express demand 

since the service level constraint for the express product cannot be satisfied. Thus, it is still optimal to adopt a 

minimum time differentiation. When the stock level increases, it is possible to capitalize more on the express 

demand, which leads to a greater time differentiation (i.e., �∗ = �no). Nevertheless, the price differentiation is 

here not large enough to justify maximizing the express demand, so there is no need for a maximum time 

differentiation. This situation is interesting as it shows that the optimal strategy is neither a minimum nor a 

maximum time differentiation but an intermediate strategy (with �∗ = �no) could be preferred.  

Finally, when 
\)\4 > �W)) '545) − ��1 − ����,, the express product becomes profitable. Thus, the loss of 

revenue from the regular product, resulting from increasing the DT, is offset by the gain of revenue from the 

express product. It is then optimal to maximize the express demand (the only limitation is the service 

constraint), which leads to a maximum time differentiation (i.e., �∗ = �\Xh).  

To explain the practical implications of the above results, we first recall that a large ratio 
545) means a 

relatively big number of lost customers relative to the number of customers switching to the express product 

when the retailer quotes a longer DT. This characterizes, for instance, a highly competitive market. In such 

cases (i.e., for large values of 
545)), we most likely have 

\)\4  ≤ 545) and, consequently, the retailers should offer 

the products with a minimum time differentiation. Alternatively, in markets with low competition, we most 

likely have 
\)\4  ≥ 545) and, consequently, the retailers should offer the products with a maximum time 

differentiation. The above analysis also reveals the following new result. While Boyaci and Ray (2003, 2006) 

and Hua at al. (2010) showed that the market characteristics govern the optimal product positioning and time 

differentiation strategies, we generalize this result and show that the inventory level also plays an important 

role. Indeed, while an extreme time differentiation strategy is proved to be optimal in most related works, we 

find that a medium time differentiation strategy may be optimal when the stock level is greater than a given 

threshold value. Proposition 2 focuses on the effect of stock level variation on time differentiation. 

Proposition 2. A higher stock level � leads the retailer to quoting a shorter DT for the regular product as long 

as it is optimal to offer the two products with a minimum time differentiation (see the required conditions in 

Proposition 1), and to quoting a longer DT in the other cases. 

It may be expected that a higher inventory would lead the retailer to favoring the express demand as this 

demand, served from the stock, generates a higher unit profit. Consequently, the retailer would quote a longer 

DT for the regular product to motivate the customers switching to the express product. However, in case of a 

minimum time differentiation, we demonstrate that the optimal DT decreases in � (see the proof in the 

appendix). The reason is that an increase in � reduces the number of switching customers in case of stockout, 

which implies a lower regular demand and, consequently, leads to a non-binding service constraint for the 
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regular product. Since we are in the case of a minimum time differentiation, it is optimal to quote the shortest 

feasible DT to the customers. Hence, the model reacts by quoting a shorter DT until it reaches the binding 

situation once again. Proposition 2 explains how the variation of retailer’s stock level impacts the time 

differentiation strategy. This result cannot be obtained from studies that focus on MTO manufacturing systems 

(Boyaci and Ray 2003, 2006, Zhao et al. 2012, Pekgün et al. 2017). In addition, studies on inventory models 

with drop-shipping (such as Ayanso et al. 2006, Khouja and Stylianou 2009, Ma and Jemai 2019) did not 

address this question. We now study in Proposition 3 the effect of the S-b-S. 

 

Proposition 3. An increase in S-b-S rate � leads the retailer to offering the regular product with a longer DT 

as long as the retailer does not adopt a maximum time differentiation strategy. In case of a maximum time 

differentiation, the optimal DT does not depend on �. 

Recall that a greater � implies a higher percentage of express demand transformed into regular demand in 

case of stockout. To understand the effect of S-b-S, three cases should be distinguished. In the case of a 

minimum time differentiation, the service constraint for the regular product is binding. Consequently, when � 

increases, the system must quote a longer DT to decrease the regular demand and satisfy the service 

constraint. In the case of an intermediate time differentiation (i.e., when �∗ = �no), none of the service 

constraints are binding (neither for the regular product nor for the express product). This situation is less 

intuitive as the optimal strategy is a trade-off between regular and express demands and does not consist in 

maximizing one type of demand. In this case, the model reacts to an increase in � by quoting a longer DT 

(similar to the first case) as this enables to offset the increase in the regular demand and to return to a more 

profitable trade-off. Finally, in case of a maximum time differentiation, the express product is much more 

profitable than the regular product, but the system cannot increase the express demand any more since the 

service constraint for the express product is already binding. Thus, an increase in � does not lead to any 

reaction. We showed analytically how the S-b-S affects the time differentiation when � and � are fixed. In 

summary, a higher S-b-S leads to a higher time differentiation, except when the time differentiation is already 

at the maximum. This is a new result since our study is first to consider the S-b-S in time-based differentiation 

models. 

5. Delivery time quotation and stock level determination model with fixed price 

We now study the case where � and � are decision variables, but � is fixed. Recall that �� = T�,� − 	�� and �� = T�,� + 	��. The resulting model, denoted by D8
,1E, is given below.                                                                                                             

D8
,1E Max <��, �� = 7� uT�,� − 	�� + � DT�,� + 	�� E�T�,� + 	�� + ���v + 7���� Z T�,� + 	��T�,� + 	�� + ���[ − =� 
 

�>?@A6B BC   
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�� − T�,� + 	�� − � DX),Y/5)
 E)
X),Y/5)
/0)1 − ]
 ≥ 0                                   (11) 

0)1X),Y/5)
/0)1 ≥ ��                                                                          (12) 

� > 0, � ≥ 0, ��  ≥ 0, ��  ≥ 0. 

 

 

Note that <��, �� is concave in � (for a given �� and reaches its maximum in �no��� = .)0) Zb0)�\)-`\4�o −
1[. To obtain a relevant problem, we must have 

0)�\)-`\4�o ≥ 1. Service constraints (11) and (12) are, 

respectively, equivalent to � ≥ ����� = .)0) w `.)04-.4-xy − 1z and � ≥ ����� = W)�-W) .)0). Hence, for a given feasible 

�, the optimal stock level is �∗��� = 7T{{�no���, �����, �����}. To make more progress, we need to distinguish 

two cases: � = 0 and � > 0. 
 

5.1. Model D|},~E without stockout-based substitution (� = �): Resolution and analytical insights 

To solve model D8
,1E for � = 0, we first provide a simpler equivalent formulation in Lemma 3. 

Lemma 3. For � = 0, model D8
,1E is equivalent to the following single-variable model. 

Max <��� =
���
��7�DT�,� − 	�� E + �� w7� − =�1 − �����z DT�,� + 	��E  p_ 7� ≤ =�1 − ������

7�DT�,� − 	�� E + ��7� − � =���� DT�,� + 	��E  p_ 7� > =�1 − ������
 

Subject to            max ���, -X),Y5) � ≤ � ≤ X4,Y54 , where �� = X4,Y-04/bDX4,Y-04E)/c54]�54 . 

Note that <��� is linear in �. This result is not intuitive; it implies that the optimal DT is either the shortest 

feasible DT (i.e., max ���, -X),Y5) �) or the longest DT (i.e., 
X4,Y54 ). When it is optimal to quote the shortest DT, we 

assume that �� ≥ -X),Y5)  since, otherwise, the retailer offers only the regular product, which is an extreme case 

that we do not study. Lemma 4 characterizes the optimal retailer’s strategy under different conditions. These 

optimal strategies are then recapitulated in Table 2. 

Lemma 4. For � = 0, the optimal solution of model D8
,1E is given as follows.  

Case of  �� ≤ ���-������ 
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- If 7� ≤ \454W)5) + o��-W)�0), then 

���
�� �∗ = �� = X4,Y-04/bDX4,Y-04E)/c54]�54

�∗ = ' W)�-W), �54X),Y�5)ZX4,Y-04/bDX4,Y-04E)/c54][
�540)

 

- If 7� > \454W)5) + o��-W)�0), then m �∗ = X4,Y54�∗ = ' W)�-W), 54X),Y/5)X4,Y540)
 

Case of  �� > ���-������ 

- If 7� ≤ wb\4545) + b o0)z�
, then 

���
�� �∗ =  �� = X4,Y-04/bDX4,Y-04E)/c54]�54

�∗ = wb\)0)o − 1z �54X),Y�5)ZX4,Y-04/bDX4,Y-04E)/c54][
�540)

 

- If 7�>wb\4545) + b o0)z�
, then � �∗ = X4,Y54�∗ = wb\)0)o − 1z 54X),Y/5)X4,Y540)

 
 

Table 2. Optimal retailer’s strategy under the setting of model D8
,1E with � = 0 

7� ≤ =�1 − ������ 7� > =�1 − ������ 

7� ≤ 7�	���	� + =�1 − ����� 7� > 7�	���	� + =�1 − ����� 7� ≤ ��7�	�	� + � =����
 7� > ��7�	�	� + � =����

 

Minimum time 

differentiation 

Only the express product 

is offered (DFS channel) 

Minimum time 

differentiation 

Only the express 

product is offered (DFS 

channel) 

Based on the result of Lemma 4, we derive insights into the optimal strategy of the retailer in the following 

two propositions. In Proposition 4, we investigate the effect of prices on the time differentiation. 

Proposition 4. There exists a threshold limit on the express product’s price below which it is optimal to offer 

both products with a minimum time differentiation, and above which only the express product should be 

offered (i.e., the retailer must rely only on the DFS channel). This threshold price depends on the regular 

product’s margin as follows: 

- If  7� ≤ o5)0)q4 ' W)�-W),�
, then the threshold price is  

54\4W)5) + o��-W)�0) + 6�, 
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- If  7� > o5)0)q4 ' W)�-W),�
, then the threshold price is wb54\45) + b o0)z� + 6�. 

Observing Table 2, we expect that an increase in 7� would have a non-monotonous effect on the time 

differentiation strategy. However, whatever the values of the parameters, we demonstrate that the intermediate 

intervals (second and third columns of Table 2) cannot be feasible simultaneously (see the proof of 

Proposition 4 in the appendix). Therefore, when 7� increases, the model reacts only by moving from a 

minimum time differentiation to giving up the drop-shipping channel. Thus, unlike model �8
� (in which the 

stock level was fixed), it is never optimal here to have an intermediate time differentiation strategy. There are 

only two potential optimal strategies: offering both products with a minimum time differentiation or offering 

only the express product. In Proposition 5, we investigate the case where both products are offered to the 

customers. 

Proposition 5. If both products are offered to the customers, then the higher the express product’s price is, the 

longer the DT of the regular product and the higher the stock level are. 

Proposition 5 investigates the impact of the price differentiation and indicates, as expected, that the optimal 

DT and the optimal stock are increasing in the express product’s price. The reason is that a longer DT for the 

regular product and a higher stock favor the express demand. Thus, the higher the price differentiation is, the 

higher the time differentiation becomes, which confirms the findings of Modak and Kelle (2019) and Boyaci 

and Ray (2003, 2006). We complement these findings by showing that a higher price differentiation leads the 

retailer to hold more stock. Finally, note that the results discussed in this section are relative to the case 

without S-b-S and that the consideration of S-b-S will likely impact such trade-offs. This is the focus of the 

next section. 
 

5.2 Model D|},~E with stockout-based substitution (� > �): Analysis and numerical insights 

When � > 0, it is not possible to solve model �8
,1� analytically. The results are then based on numerical 

analyses. We first provide a simpler formulation of the model and then use it to conduct our analysis. 

Lemma 5. For � > 0, Model D8
,1E is equivalent to the following single-variable model: Max <���

=
���
�
���

 <���� = w7� − 7�� z �� + 7�T�,� + 7�T�,�� + =T�,��� − w7� − 7�� z U� + w7�	� − 7�	�� + =	��� z �
− w=��� z DT�,� + 	�� E�

�� − T�,� + 	�� − U�      p_ �� ≤ � ≤ ��
<���� = 7�DT�,� − 	�� E + w7� + =�� − =�� � − 7� − �7�� z DT�,� + 	��E  p_ �� ≤ � ≤ T�,�	�
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where � = 7T{ Zb0)�\)-`\4�o , ��-W)[ and �� = D�DX4,Y-04E/`X),YE/bD�DX4,Y-04E/`X),YE)/c���54-`5)�]���54-`5)� . 

Note that when � = 0, we have �� = ��, implying that <���� is no longer defined and that <��� = <���� 

over ���, X4,Y54 ". Thus, we obtain the same linear profit function given in the previous section (Lemma 3). When � > 0, we have two different behaviors of profit in function of � represented by the two functions <���� and <���� defined, respectively, over ���, ��", and ���, X4,Y54 ". <���� is not linear while <���� is linear. Therefore, the 

optimal DT is either the DT that maximizes <���� over ���, ��", or �� or 
X4,Y54 . Given the complexity of <����, it 

is not possible to obtain a closed-form expression of the optimal solution. Hence, the remainder of our 

analysis will be based on numerical experiments. We consider three market structures as in Boyaci and Ray 

(2003). The first market is characterized by  5)5y > 3)3Y, i.e., the switchovers are more governed by time 

difference than price difference, which is referred to as a Switchovers Time-Driven (STD) market. The second 

market is characterized by 
5)5y F 3)3Y, i.e., the switchovers are more governed by price difference than time 

difference, which is referred to as a Switchovers Price-Driven SPD market. When 
5)5y = 3)3Y, the market is 

neutral (neither STD nor SPD). Similar to Boyaci and Ray (2003), we consider the following parameters for 

each market structure. For the neutral market, �� = 50, �� = 10, 	
 = 50, and 	� = 10. For the STD market, �� = 50, �� = 10, 	
 = 25, and 	� = 25. For the SPD market, �� = 25, �� = 25, 	
 = 50, and 	� = 10. In 

our numerical experiments, the values of reference for most parameters are also based on the numerical 

example used in Boyaci and Ray (2003). For the unit inventory holding cost, which is not considered in 

Boyaci and Ray (2003), we make it consistent with the price of the product. For the S-b-S rate, we cover all 

significant values (from 0.2 to 1 with a step of 0.2). Then, for each type of market, we generate 168,000 

instances by varying the values of the parameters, as shown in Table 3.  

 

Table 3. Test cases 

Parameter Generated values � �� �� 6� 6� = �� �� 

800, 900, 1000, 1100, 1200  

150 

200, 250, 300, 350, 400 

3 

3.5, 4, 4.5, 5  

0.5, 1, 1.5, 2 

6, 7, 8, 9, 10, 11, 12 

Foe each pair (��, 6�), we vary �� from ��� − 6� + 6�) to 18 with a step of 1 
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� �� = �� 

0.2, 0.4, 0.6, 0.8, 1 

0.98 

The analysis of the results leads to the following observations.  

Observation 1. If Z−	�7� + 	� '7� + o0) − o0) � − \)-`\4� ,[ > 0 (i.e., if <���� is increasing in �), then it is 

more profitable to offer only the express product (i.e., �∗ = X4,Y54 ) and to use the drop-shipping channel as a 

backup solution in case of stockout. 

This result has been observed in all instances in which <���� is increasing (39,875 instances in total). To 

illustrate, we consider the example of Figure 5 (A=1000, �� = 10, 6� = 3, �� = 150, �� = 18, 6� = 4.5, �� = 400, = = 1, �� = �� = 0.98, and an STD market with � = 0.80). We observe that the profit is 

increasing in � and, consequently, the optimal solution is offering the longest DT for the regular product. This 

means that the initial regular demand is equal to zero and that only the express product is to be offered.  

 

  Figure 5. Profit in function of DT for increasing <���� 

 

Observation 2. If Z−	�7� + 	� '7� + o0) − o0) � − \)-`\4� ,[ F 0 (i.e., if <���� is decreasing in �), then it is 

optimal to offer both products. In this case, quoting the DT �� is a near-optimal solution. 

The case where <���� is decreasing in � is the most observed case. For the neutral market, we obtained 

56,705 feasible instances. In all of them, we have Z−	�7� + 	� '7� + o0) − o0) � − \)-`\4� ,[ F 0, implying 

that the linear function <���� is decreasing in �. For the SPD market, we obtained 32,031 feasible instances, 

and <���� is also decreasing in all of them. Finally, for the STD market, <���� is decreasing in 24,904 

instances and increasing in 39,875 instances.  
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For each instance with decreasing <���� (113,640 instances in total), we calculated the optimal DT and 

deduced the profit gap resulting from quoting �� (which is the intersection point between <���� and <����� instead of the real optimal DT. The gap is calculated as follows: 
�W��fn ���nf\X
 ���-�W��fn �
���W��fn ���nf\X
 ��� × 100. 

For all market types, we obtained a minimal mean gap (0.007% for the neutral market, 0.0002% for the STD 

market, and 0.012% for the SPD market). This shows that �� is a near-optimal DT. To illustrate, we consider 

the following example: A=1000, �� = 10, 6� = 3, �� = 150, �� = 14, 6� = 4.5, �� = 400, = = 1, �� = �� =0.98, with a neutral market structure and different values of �. The profiles of the profit functions are shown 

in Figure 6 (note that <���� and <���� are, respectively, represented by dashed and continuous lines over ���, ��" and ���, X4,Y54 ", and that �� is the intersection point). For � = 0.2, <���� is increasing over ���, ��" and, 

consequently, �∗ = �� (since <���� is decreasing). For the other values of �, <���� first increases and then 

slightly decreases before ��. We can see that the curve is flat between the optimal DT and ��, which means 

that �� is near-optimal.  

  

      Figure 6. Profit in function of DT when <���� is decreasing 
 

 

Observation 3. The S-b-S leads to a higher time differentiation (i.e., offering the regular product with a longer 

DT), and ignoring the S-b-S (by quoting the optimal DT obtained for � = 0, namely ��) leads to a 

considerable loss. 

Since �� > ��, it is clear that the consideration of the S-b-S leads to a retailer quoting a longer DT. In 

addition, similar to the results obtained from model �8
�, we observe in Figure 6 that the higher the value of � is, the longer the optimal DT for the regular product is. Note that <���� increases rapidly at the 

neighborhood of �� (for all values of ��. This means that ignoring the S-b-S, and, consequently, quoting the 

optimal DT obtained for � = 0 (i.e., ��) can lead to a substantial loss. We quantified this loss by calculating 

� = 0.20 � = 0.40 � = 0.60 � = 0.80 
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the gap 
�W��fn �
��-�W��fn �
¢��W��fn �
�� × 100. We found a mean gap of 39.36% for the neutral market, 57.18% for the 

SPD market, and 45.28% for the STD market. 

Our analysis sheds light on an important new finding that has not been revealed in the extant literature. We 

show that the existence of stockout-based switching customers must lead retailers to increase the time 

differentiation, otherwise their expected profit will significantly decrease. In practice, this result means that 

retailers should quantify the S-b-S rate and select slower drop-shippers when the S-b-S increases. This is 

particularly relevant to leading retailers or retailers who are the exclusive sellers of some products. As the S-b-

S rate is usually high for these retailers, it may be useless to offer fast drop-shipping channels. Note finally 

that our model generalizes many frameworks that consider stockout in the literature (e.g., Liu et al. 2007, 

Khouja and Stylianou 2009, Ma and Jemai 2019, Modak & Kelle 2019) as the optimal strategy can be either 

to offer two differentiated products, or to use the drop-shipping only as a backup solution in case of stockout. 

In this latter case, the whole system can be viewed as a traditional shipping system with a combination of lost 

sales (customers who leave in case of stockout) and back-orders (customers who switch to drop-shipping in 

case of stockout). 

6. General model 

In this section, we study the general model (8
,1,�) where �, �, and � are decision variables and the S-b-S is 

considered. Given the complexity of the model, we first provide a simpler quasi-equivalent formulation using 

the results of the previous section. Then, we rely on the new formulation to conduct experiments and derive 

managerial implications. All the results of this section are based on numerical experiments. 

6. 1. Model reformulation  

To simplify the analysis, we focus on the more general case where both regular and express products are 

offered to the customers. Therefore, we consider the values of � such that Z−	�7� + 	� '� − 6� + o0) −
o0) � − �-£)-`\4� ,[ F 0 (see Observations 1 and 2). Under this condition, and for a given price �, we have 

shown in the previous section that the model can be written in function of the single variable � and that � = �� 

is a near-optimal solution (for � = 0, �� = �� is the exact optimal solution). Hence, for a given price �, we 

replace � with ��. Then, we show by standard (but long) calculus, that model (8
,1,�) can be written in 

function of the single variable �. We denote this new model by (M) and provide it below. We recall that the 

express product generates a higher margin than the regular product (i.e., � − 6� ≥ 7��. In addition, we have 

explained in the case of fixed price that we must have 
0)�\)-`\4�o ≥ 1 since, otherwise, it is not possible to 
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generate a positive profit. This constraint is equivalent to � ≥ o0) + �7� + 6� . Hence, we finally have � ≥
�\fg = 7T{ �7� + 6�, o0) + �7� + 6��. This constraint is added to the general model.  

�8� Max�¤�r¥¦ <��� =

��
��
��
�
���
��
�  <a��� = 7�DT� + ��� − 	������E + w���� − 6�� − ��=�1 − ����� + ��1 − ���7�z DT� − ��� + 	������E 

            p_ � ≤ 7pV §7�	���	� + =�1 − ����� − ��1 − ���7��� + 6�, =�1 − ������ + �7� + 6�¨        
<c��� = 7�DT� + ��� − 	������E + ©��� − 6� − �7� − � =���� + �7�ª DT� − ��� + 	������E

                   p_  =�1 − ������ + �7� + 6� ≤ � ≤ ���	� − �	��7�	� + � =���� + �7� + 6�

 

 

where �\fg = 7T{ «71 + 62, =�2 + �71 + 62¬, 

 ����� = ���X4/3)�-04�/`�X)-34���/����X4/3)�-04�/`�X)-34���)/c���54-`5)�]���54-`5)� ,  

� = ��-W) if � ≤ o��-W)�)0) + �7� + 6� (i.e., for <a���), and � = b0)��-£)-`\4�o  otherwise (i.e., for <c���). 

 

Before proceeding further, we shall verify that model �8� provides a good approximation of the original 

model (8
,1,�). We generate instances while varying the values of the different parameters according to the 

rules described in Table 3. For the S-b-S rate �, we consider the following values: 0, 0.2, 0.4, 0.6, 0.8, and 1. 

We obtain 7401 feasible instances with � = 0 and 36363 feasible instances with � > 0. For each instance, we 

calculate the gap between the optimal profit obtained with model (M) and that of the original model (8
,1,�). 

To solve model (8
,1,�), we used the algorithm SLSQP (sequential least squares programming) of the SciPy 

module. This is a recommended procedure for nonlinear optimization problems with nonlinear constraints. 

The modified model (M) can be easily solved to optimality with any computational software. The gap between 

both models is calculated as 
D­®¯¥°¥¦±y r®²³y s ­r®²¥´¥³² r®²³yE∗���­®¯¥°¥¦±y r®²³y . Table 4 shows the results. Notice that we 

consider the value of confidence 95%. 

Table 4. Comparison between the original model and the modified model 

 � = � � > � 

Test Cases: 2,800 Test Cases: 14,000 

Market Nb. 

Relevant 

Instances 

Mean Gap Standard 

Deviation 

Confidence 

Interval 

Nb. 

Relevant 

Instances 

Mean 

Gap 

Standard 

Deviation 

Confidence 

Interval 
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Neutral 2449 0.0002 0.0003 (0.00022, 

0.00024) 

11955 0.0087 0.0294 (0.0082, 

0.0092) 

SPD 2798 0.00014 0.0001 (0.00013, 

0.00015) 

13917 0.0102 0.0494 (0.0094, 

0.0110) 

STD 2154 0.95 3.0392 (0.8216, 

1.0783) 

10491 0.8560 2.7181 (0.8036, 

0.9076) 

Table 4 shows that the mean profit gap is close to zero, particularly for the neutral and SPD markets. This 

confirms that the modified model (M) is quasi-equivalent to the original model (8
,1,�). This small gap 

between the optimal profit of model (M) and that of model (8
,1,�) is due to the use of the DT �� in the 

modified model instead of the optimal DT (we have shown that �� is a near-optimal solution for a given price �). 

6. 2. Numerical analysis  

The remainder of our analysis will be based on model (M). Our main objective is to investigate whether the 

effect of the S-b-S observed in the previous models still holds here. We consider the basic example: A=1000, �� = 8, 6� = 3, �� = 150, 6� = 4.5, �� = 400, = = 1, and �� = �� = 0.98. We vary � and present the results 

in the following figures. 

 

Figure 7. Effect of stockout-based substitution on DT quotation 
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Figure 8. Effect of stockout-based substitution on inventory

 

Figure 9. Effect of stockout-based substitution on price 

 

The analysis of the numerical results leads to the following main finding. 

Observation 4. In the general model, a higher S-b-S rate would normally lead to a greater time differentiation 

and to holding less stock. However, it would not impact the price differentiation.   

When � increases, different trade-offs between the price, DT, and stock govern the system. Nevertheless, 

we observe for all types of markets that an increase in the S-b-S rate does not affect the optimal price �∗. This 

result is not intuitive and implies that the price quoted for the express product should be the same whatever the 

extent of S-b-S. In particular, the optimal price is unchanged with or without S-b-S. To confirm this result, we 

extend our experiments to test, for each type of market, all the instances that are generated according to Table 

3. We proceed as follows. For each instance that has � > 0, we solve the modified model �8� and obtain the 

optimal price ��`µ��∗ . Then, for this same instance, we set � = 0 and solve model �8� again to obtain the new 



28 

 

optimal price that corresponds to � = 0. We denote this new price by ��`K��∗ . Finally, we calculate the price 

difference ��`µ��∗ − ��`K��∗ . We calculate this price difference for each instance generated in Table 3. The 

results are provided in Table 5. We see that the mean price difference (for all instances) is very close to zero, 

which confirms that the optimal price is not sensitive to the S-b-S. To confirm these results, we extend the 

experiments to check whether our findings still hold for the original model with fixed S. We solve the 

resulting model numerically. Then, we vary � and observe its impact on the price and DT. The results show 

that the DT differentiation increases, and the prices are constant for increasing values of �. Hence, the 

findings of Observation 4 are still valid (we do not present these experiments here due to space constraints). 

Table 5. Comparison of optimal prices with  � > 0 and  � = 0 

Market Mean price difference Standard deviation Confidence interval 

Neutral 0.0046 0.0066 (0.0044, 0.0049) 

SPD 0.0080 0.0083 (0.0077, 0.0083) 

STD 0.0769 0.2326 (0.0683, 0.0856) 

 

The above results were illustrated in Figures 7, 8 and 9. We see that an increase in the S-b-S leads to a 

greater time differentiation and to holding less stock but does not impact the price. When � increases, it is 

preferable to capitalize on the express demand since the loss of the regular demand can be offset by the 

additional number of customers switching from the express product to the regular product in case of stockout. 

Thus, as it is not profitable to reduce the price of the express product (we have just shown that this price does 

not change), the system reacts by quoting a longer DT for the regular product. In addition, when � increases, 

the stockout becomes less penalizing for the retailer as there is a smaller proportion of customers leaving the 

system. Thus, the system favors reducing the inventory cost over satisfying more express demand. This 

explains why the stock decreases when � increases. Nevertheless, beyond a threshold value, it is no longer 

possible to reduce the stock since the system must satisfy the service constraint. Therefore, the stock remains 

constant, as we observe in Figure 8. 

Finally, we investigate the effect of service rates �� and �� on the retailer’s decisions. We represent the 

results for the neutral market in the following figures. We have obtained similar results for the other types of 

markets (we do not provide these results due to space constraints). 
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Figure 10. Effect of capacities on DT quotation 

 

Figure 11. Effect of capacities on inventory 

 

Figure 12. Effect of capacities on pricing 
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Observation 5. A greater service rate in the regular channel or the express channel leads to a lower DT and 

price differentiation and to a lower stock.  

A greater drop-shipping service rate �� favors the regular product. Therefore, the model reacts by 

increasing the regular demand which leads to quoting a shorter DT for the regular product (see Figure 10), and 

to reducing the stock and price for the express product (Figures 11 and 12, respectively) as this increases the 

number of customers switching from the express channel to the regular one. Less intuitive is the fact that a 

greater inventory refilling service rate �� also leads to a shorter DT for the regular product (Figure 10). The 

reason is that a greater �� allows to serve more express customers and, thus, reduces the number of customers 

switching to the regular channel, which enables to quote a shorter DT for this channel and attract more new 

customers. A greater �� reduces the stockout probability which allows to keep a lower stock (see Figure 11) 

and thus, reduces the inventory cost.  It also enables to serve more express demand which explains the 

decrease in the express product’s price (Figure 12). 

The general model confirms that a higher S-b-S leads to a greater time differentiation, which is consistent 

with the previous findings. The main new result is that the S-b-S does not impact the price differentiation. In 

practice, many retailers rely on low-cost distant suppliers for drop-shipping. We show that this is an efficient 

strategy for retailers facing a high S-b-S rate since selecting a fast drop-shipper implies a low time difference 

between express and regular products. In general, our study demonstrates that retailers must account for the S-

b-S as this latter governs time differentiation and inventory strategies. 

7. Conclusion  

We studied the problem of a retailer serving a time- and price-sensitive market with two substitutable 

products that differ in the guaranteed DT and price. The express product is delivered from the stock, whereas 

the regular product is delivered directly from the supplier. This dual-channel distribution requires operating a 

hybrid system with a mix of DFS and drop-shipping. In case of stockout, some customers initially interested 

in the express product may switch to the regular product, which is referred to as S-b-S behavior. 

When the characteristics of the express product (price and stock) are fixed and the DT of the regular 

product is a decision variable, we solved the model analytically and found that it is not always optimal to 

adopt an extreme time differentiation strategy (maximum or minimum differentiation), but a medium time 

differentiation could be preferred. An increase in the stock level leads the retailer to offering the regular 

product with a shorter DT when the retailer adopts a minimum time differentiation and with a longer DT in all 

other cases. When the DT and the stock level are decision variables, we distinguished two situations. In case 

without S-b-S, we solved the model analytically and found that there exists a threshold value for the express 

product’s price below which it is optimal to offer both products with a minimum time differentiation and 

above which only the express product should be offered. Hence, the medium time differentiation cannot be 

optimal in this case. The consideration of the S-b-S renders the model much more complex. We therefore used 
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numerical experiments to derive the results. We characterized the situations where it is optimal to offer both 

products. In this case, we provided a near-optimal solution and showed that ignoring the S-b-S by quoting the 

optimal DT obtained without S-b-S leads to a considerable loss. Finally, we studied numerically the general 

model where the DT, stock, and price are decision variables. We used the previous results to develop a quasi-

equivalent formulation of the general model with the price as a unique variable. Based on numerical 

experiments, we found that a higher S-b-S rate leads to a greater time differentiation, which is consistent with 

the findings of both previous models. In addition, a higher S-b-S leads to holding less stock but would not 

impact the price differentiation. 

Our work can be extended to consider inventory capacity constraints in the retailer’s warehouse as this 

may prevent the model from excessively increasing the time differentiation to favor the express demand. A 

future work can investigate a more complex SC where a customer order may be delivered from the stock or 

from several suppliers. The retailer can quote a specific DT per supplier and, consequently, offer a menu of 

DTs to the customers or quote a unique DT from all suppliers, which raises the issue of allocating orders to 

suppliers. Finally, the retailer may concentrate only on the product delivered from stock and act as a 

marketplace for the manufacturer. In this case, there are two independent decision-makers, the retailer who 

decides about the express product and the manufacturer who decides about the regular product sold through 

the retailer’s channel.  
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Appendix: Proofs  

 

Calculation of stockout probability ¶� 

If the inventory is refilled to S when it is empty, the different inventory states are illustrated in the following figure. 
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Let’s define �· which stands for the probability of system in state @ (i.e., probability of having @ items in the stock). For 

each state @, the rate out of state @ is equal to rate into state @. Therefore, we have for state 0, ���� = ���� ↔ �� =
0).) ��. For state @ ∈ �1, S-1], ���· = ���·/�  ↔ �f = �·/�. For state S, ���� = ���1  ↔ �1 = 0).) ��. The summation 

of all states probabilities must be equal to 1. Since ∑ �·1·K� = 1, we finally obtain �� = '1 + � 0).),-�
. 

Proof of Lemma 1. For �=0, constraint (8) is equivalent to 	��� − DT�,� − ��E� − U ≥ 0. The quadratic equation 	��� −
DT�,� − ��E� − U = 0 has a positive discriminant and only one positive root, �� = X4,Y-04/bDX4,Y-04E)/c54]�54 . Thus, for 

�=0, constraint (8) is equivalent to � ≥ ��.  

For � > �, we obtain by standard calculus that constraint (8) is equivalent to _̀ ��� ≥ 0. _̀ ��� is increasing in �. 
Indeed, a unitary increase in � leads to a loss of 	� regular customers and to a gain of 	� express customers. Given that 	� > 	� and that only a part of 	� will switch to the regular products (in case of stockout), we deduce that a unitary 

increase in � leads to a lower regular demand and consequently, to a higher probability of satisfying the service 

constraint. This means that _̀ ��� is increasing in �. Furthermore, _̀ ��� is decreasing in � because a greater � implies a 

higher percentage of express demand transformed into regular demand in the case of stockout and, thus, a higher 

regular demand, which implies a lower probability of satisfying the service constraint. Hence, we deduce that _̀ ���� ≤
_�����=0. Therefore, _̀ ��� increases from a negative value to a positive one over d�� , X4,Y 54 e (note that we must have 

_̀ 'X4,Y 54 , > 0 since otherwise the model is infeasible). It is then deduced that _̀ ��� has only one root in d�� , X4,Y 54 e 

(denoted by �`) and that constraint (8) is equivalent to � ≥ �`. 

Proof of Lemma 2. We obtain by standard calculus 
¹)­�
�¹
) = − ��5)0)1�)�\)-`\4�DX),Y/5)
 /0)1Eº ≤ 0 (since 7� ≥ �7� TV» T�,� +

	�� + ��� ≥ 0�. Thus, <��� is concave. After simplification, the first derivative condition is equivalent to 	���� +
2DT�,� + ���E	�� + DT�,� + ���E� − 5)�0)1�)�\)-`\4�\4�54-`5)� = 0. This quadratic equation has a positive discriminant, 

c5)º�0)1�)�\)-`\4�\4�54-`5)� , and only one positive root, 
-X),Y/0)1 Zbq)�r)str4�r4�q4stq)�  -�[

5) . Therefore, <��� reaches its maximum in �no =
-X),Y/0)1 Zbq)�r)str4�r4�q4stq)�  -�[

5) . Furthermore, we must have � ∈ ��\fg, �\Xh". The result follows immediately. 

Proof of Proposition 1. Case 1. It can be verified that  \)\4 ≤ 545) is equivalent to 
5)�\)-`\4�\4�54-`5)�  ≤1. In this case, �no =

-X),Y/0)1 Zbq)�r)str4�r4�q4stq)� -�[
5) ≤ -X),Y 5) , implying that �no ≤ �\fg = 7T{ {�`, -X),Y 5) }. Consequently, �∗ = �\fg (according to 

Lemma 2), which means that the firm opts for a minimum time-differentiation.  

Case 2. For 
545) F \)\4  ≤ �W)) '545) − ��1 − ����,, it is clear that �no ≤ �\Xh  but �no is not necessarily smaller than �\fg. 

Hence, �∗ = 7T{ {�\fg , �no}.  �no ≥ �\fg ⇔ �� wb5)�\)-`\4�\4�54-`5)� − 1z � ≥ 	��` + T�,�. For small values of � (e.g., � close 
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to 0), we have �� wb5)�\)-`\4�\4�54-`5)� − 1z � F 	��` + T�,�, which means that �no F �\fg and consequently �∗ = �\fg. When � 

increases, we prove in the note below that the right-hand-side, 	��` + T�,�, decreases (or remains constant for � = 0), 

while the left-hand-side, �� wb5)�\)-`\4�\4�54-`5)� − 1z �, clearly increases. Hence, there is a threshold value of � above which 

we always have �no ≥ �\fg and consequently �∗ = �no.  

Case 3. It can be verified that 
\)\4 > �W)) '545) − ��1 − ����, is equivalent to �no > ��-W)�0)1-W)X),YW)5) , which means that �no >

�\Xh = 7pV {��-W)�0)1-W)X),YW)5) , X4,Y 54 }. This implies that �∗ = �\Xh (according to Lemma 2). Thus, the firm opts for a 

maximum time-differentiation. 

Note. For � > 0, �` (and consequently, 	��` + T�,�) decreases in �. Indeed, constraint (8) is equivalent to _̀ ��� ≥ 0. 

Since the left-hand-side of constraint (8) is increasing in �, _̀ ��� also increases in �. In addition, _̀ ��� increases in � (as 

demonstrated earlier). Thus, the greater � is, the faster _̀ ��� reaches 0. Hence, �` is decreasing in �. For � = 0, it is 

clear that �� does not depend on �. 

Proof of Proposition 2. If the firm adopts a minimum time-differentiation strategy, then �∗ = �`. It has been proved 

earlier that �` is decreasing in �. Otherwise, �∗ = �no or �\Xh. In both cases, it is clear that �∗ increases in �.  

Proof of Proposition 3. If the firm adopts the maximum time-differentiation, then  �∗ = �\Xh, which does not depend on �. Otherwise, �∗ = �no or �`. It is clear that �no is increasing in �. As for �`, it has been shown earlier that _̀ ��� is 

increasing in � and decreasing in � for a given �. Therefore, �`, which is the root of _̀ ��� = 0, gets bigger when � 

increases. 

Proof of Lemma 3. If � = 0, then we always have ����� ≤ 0, implying that �∗��� = 7T{{�no���, �����}. By standard 

calculus, it comes that �∗��� = ����� if 7� ≤ o��-W)�)0) and �∗��� = �no��� otherwise. Furthermore, constraint (11) is 

equivalent to � ≥ �� = X4,Y-04/bDX4,Y-04E)/c54]�54 . Since, in addition, 
-X),Y5) ≤ � ≤ 

X4,Y54  (to guarantee positive demand for 

each product), model D8
,1E with � = 0 is equivalent to the single-variable model of Lemma 3. 

Proof of Lemma 4. This result is obtained by using the first derivative condition with the linear functions defining model D8
,1E and given in Lemma 3. In each case (i.e., 7� ≤ o��-W)�)0) or 7� > o��-W)�)0)), the shortest DT is optimal when the 

first derivative is negative (i.e., when 7� ≤ \454W)5) + o��-W)�0) or 7� ≤ wb\4545) + b o0)z�
, respectively), otherwise the 

longest DT is optimal. As explained in the proof of Lemma 3, �∗��� = ����� if 7� ≤ o��-W)�)0) and �∗��� = �no��� 

otherwise.  

Proof of Proposition 4. We let cases 1, 2, 3 and 4 respectively denote the situations where  7� ≤ o��-W)�)0)  and 7� ≤ 54\4W)5) + o��-W)�0), 7� ≤ o��-W)�)0) and 7� > 54\4W)5) + o��-W)�0),  
7� > o��-W)�)0) and 7� ≤ wb54\45) + b o0)z�

, and finally 7� > o��-W)�)0) and  
7� > wb54\45) + b o0)z�

. Note that 
54\4W)5) + o��-W)�0) F o��-W)�)0) ⇔ 54\45) F o0) ' W)�-W),�

 and that wb54\45) +
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b o0)z�
>

o��-W)�)0) ⇔ 54\45) > o0) ' W)�-W),�
. Therefore, cases 2 and 3 cannot be feasible simultaneously. Thus, varying the 

value of � enables to have one of the two following sequences: case 1-case 2-case 4 or case1-case 3-case 4. Using the 

optimal solutions provided in Lemma 4, the result follows immediately. 

Proof of Proposition 5. When both products are offered to the customers, it has been demonstrated that �∗ = �� =
X4,Y-04/bDX4,Y-04E)/c54]�54 . Since T�,� = � − ���� + ���, it is deduced that the higher the value of � is, the longer �∗ 

becomes. As for the stock, we have in this case �∗��� = 7T{{�no���, �����} (see the proof of Lemma 3). Consequently, �∗ 

is increasing in �� (since both of �no��� and ����� are increasing in ��). Given in addition that �� is increasing in � and 

that the optimal DT is increasing in �, we deduce that the higher the value of � is, the greater �∗ becomes.  

Proof of Lemma 5. For a given �, we have established that �∗��� = 7T{{�no���, �����, �����}, where �no��� =
.)0) Zb0)�\)-`\4�o − 1[, ����� = .)0) w `.)04-.4-xy − 1z, and ����� = W)�-W) .)0).  
It is firstly noted that �no��� ≥ ����� is equivalent to � ≥ ��  where �� =
Zb½)�r)str4�¾ DX4,Y-04E/`X),Y[/�Zb½)�r)str4�¾ DX4,Y-04E/`X),Y[)/cb½)�r)str4�¾ Zb½)�r)str4�¾ 54-`5)[]

�Zb½)�r)str4�¾ 54-`5)[ . Indeed, �no��� ≥
����� ⇔  Z	�b0)�\)-`\4�o − �	�[ �� − Zb0)�\)-`\4�o DT�,� − ��E + �T�,�[ � − Ub0)�\)-`\4�o ≥ 0. Given that 

	�b0)�\)-`\4�o − �	� > 0 (since 
0)�\)-`\4�o > 1 and 	� > 	�), the discriminant of this quadratic function is positive. 

Hence, �no��� ≥ ����� ⇔ � ≥ ��. 

In addition, it can be demonstrated by standard calculus that ����� ≥ ����� is equivalent to � ≥ �� =
X4,Y/`��-W)�X),Y-04/bDX4,Y/`��-W)�X),Y-04E)/c�54-`��-W)�5)�]��54-`��-W)�5)� , and ����� ≥ �no��� is equivalent to 7� − �7� ≤ o��-W)�)0) .  

Substituting �∗��� by its expression in each situation, we get the following equivalent formulation of model D8
,1E. 

-If 7� − �7� ≤ o��-W)�)0), then the model is equivalent to: 

8T{ <��� =
���
��
���
�  w7� − 7�� z �� + 7�T�,� + 7�T�,�� + =T�,��� − w7� − 7�� z U� + w7�	� − 7�	�� + =	��� z �

− w=��� z DT�,� + 	�� E�
�� − T�,� + 	�� − U�                                                                                 p_ �� ≤ � ≤ ��

7�DT�,� − 	�� E + u�1 − ����7� + ��7� − =���1 − �����v DT�,� + 	��E  p_ �� ≤ � ≤ T�,�	�

 

- If 7� − �7� > o��-W)�)0), then the model is equivalent to: 
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8T{ <��� =
���
��
���
�  w7� − 7�� z �� + 7�T�,� + 7�T�,�� + =T�,��� − w7� − 7�� z U� + w7�	� − 7�	�� + =	��� z �

− w=��� z DT�,� + 	�� E�
�� − T�,� + 	�� − U�                                                                               p_ �� ≤ � ≤ ��

7�DT�,� − 	�� E + u7��� + = − 2���=�7� − �7�� �� v DT�,� + 	��E  p_ �� ≤ � ≤ T�,�	�

 

By introducing the notation  � = 7T{ Zb0)�\)-`\4�o , ��-W)[ and �� =
D�DX4,Y-04E/`X),YE/bD�DX4,Y-04E/`X),YE)/c���54-`5)�]���54-`5)� , we get the compact formulation of model D8
,1E given in Lemma 5.   

Simulation of the expected stock level with ROP>0. We consider different values of λ₂, μ₂ and � as well as different 

values of ROP (ROP=0, ROP=1, ROP=2, ROP=5% of S, and ROP=10% of S). For each value of ROP, we simulate the 

system with ARENA for the equivalent of 300,000 hours and calculate the expected stock level. The results are given in 

the table below. We also give between parentheses the exact stock level obtained analytically for ROP=0 (i.e., 

�̅= 1/�� ��/ À)½)Á) and for ROP=1 (i.e., �̅= 
�1-��wÁ½�½�À��)½)) z0)/.)/0./0�0/.��1-��). We then compare the expected stock level obtained with 

simulation (and analytically when possible) to 
1 � . We see that considering �̅ ≈ 1� is a very good approximation for the 

expected stock level. 

λ₂ μ₂ ~ 
Ã₂ Å₂~ 

 
~ �  ROP=0 ROP=1 ROP=2 ROP=5% of S ROP=10% of S 

80 40 60 0.03 30 (29.51) 29.48 (29.66) 29.64 29.94 30.28 31.58 

80 40 80 0.02 40 (39.51) 39.50 (39.66) 39.60 39.96 40.76 42.52 

80 60 60 0.02 30 (29.83) 29.80 (30.04) 30.06 30.33 30.82 32.18 

80 60 80 0.01 40 (39.83) 39.82 (40.04) 39.97 40.40 41.26 43.22 

80 80 60 0.01 30 (30.00) 30.02 (30.24) 30.29 30.59 31.08 32.52 

80 80 80 0.01 40 (40.00) 39.97 (40.24) 40.30 40.64 41.49 43.44 

100 40 60 0.04 30 (29.28) 29.29 (29.32) 29.35 29.63 29.90 31.14 

100 40 80 0.03 40 (39.27) 39.26 (39.39) 39.40 39.53 40.44 42.17 

100 60 60 0.02 30 (29.67) 29.62 (29.84) 29.82 30.14 30.55 31.84 

 




